Получив формулу для центробежной силы, Ньютон сразу попытался сопоставить ее с силой тяжести. Такое сопротивление напрашивалось само собой, если он хотел ответить на вопрос, с которым столкнулся еще при чтении «Диалога»: почему предметы не срываются с поверхности Земли в результате ее суточного вращения? Галилей был на правильном пути, но не сумел довести дело до конца, его объяснение было лишь качественным. Он считал, что сила тяжести, которую он называл gravita, действует на тело, стремящееся при вращении Земли отлететь от нее по касательной, и это действие превалирует над стремлением тела удалиться от центра Земли.
Ньютон решил довести решение проблемы до численного результата. Зная формулу центробежной силы, он смог вычислить достаточно точно ускорение свободного падения в экспериментах с коническим маятником. Он получил значение, равное 960 см/с2
. Из данных, содержащихся в «Диалоге», он получил также, «что сила Земли, направленная от ее центра, относится к силе тяжести как один к 144 или около того». Но эти расчеты были проведены с учетом галилеевской величины ускорения свободного падения, которая после проведения Ньютоном опытов с коническим маятником оказалась вдвое заниженной. Ньютон это учел и получил окончательное отношение 1 : 288 [4, III, с. 44—45]. Нет никаких оснований не верить словам Ньютона, что «в тот же самый год он начал думать о тяжести, простирающейся до орбиты Луны (найдя, как вычислить силу, с которой шар, обращающийся внутри сферы, давит на ее поверхность)». Естественно было сначала сравнить центробежную силу на орбите Луны с силой тяжести на поверхности Земли. Легко подсчитать, что центробежная сила на лунной орбите в 14,26 раза меньше, чем на поверхности Земли. Тогда у Ньютона должно было получиться, что сила тяжести на поверхности Земли в 14,26 • 288 = 4106 раз больше центробежной силы на лунной орбите (Ньютон в своих записках говорит, что эта величина получилась у него немногим более 4000).Этому результату Ньютон попытался дать другое теоретическое объяснение. При помощи третьего закона Кеплера он показал, что для небесных тел стремление удалиться от центра их обращения обратно пропорционально квадрату их расстояния от этого центра. Действительно, F ~ v2
/R и T ~ R3/2 при учете того, что v = 2R/T, дают F ~ 4/R2•R3/T2; а так как R3/T2 = const, то F ~ 1/R2.Итак, с одной стороны, он получил, что сила тяжести на Земле в 4000 раз больше, чем центробежное стремление на лунной орбите. С другой стороны, он вывел, что согласно закону обратных квадратов сила тяжести должна быть в 3600 раз больше этого стремления (радиус лунной орбиты принимается равным 60 земным радиусам): если предположить, как это сделал Ньютон, что планеты удерживаются на своих орбитах вследствие того, что сила тяготения уравновешивается центробежной силой.
Совпадение и правда показалось ему pretty nearly и достаточным, чтобы увидеть в этом балансе сил рациональное зерно. Но настоящее понимание концепции тяготения, как и истинного смысла центробежной силы, пришло к Ньютону много позднее.
Обычно возникновение идеи о всемирном тяготении связывается с легендой о яблоке. Вполне вероятно, что случай с яблоком действительно имел место, так как он находит подтверждение в четырех независимых свидетельствах: Кондуитта, Де Муавра, Стьюкли и Роберта Грина, а также в связанных с ними утверждениях Уэстона и Пембертона.
Обстоятельства дела сводятся к тому, что «в 1666 году он (Ньютон) снова приехал из Кембриджа к своей матери в Линкольншир, и в то время, когда он размышлял в саду, ему пришло в голову, что сила тяжести (которая заставляет яблоко падать с дерева на землю) не ограничена определенным расстоянием от Земли, но должна простираться много дальше, чем обычно думают. Почему не столь далеко, как до Луны? — сказал он самому себе, а если это так, то это должно сказываться на ее движении и, возможно, удерживать ее на ее орбите. После чего он подсчитал, каково должно было бы быть следствие такого предположения. Однако когда в отсутствие книг под рукой он принял (как это обычно делали географы и наши моряки до того, как Норвуд измерил Землю), что в одном градусе широты на поверхности Земли содержится 60 английских миль, его расчеты не совпали с теорией и ему пришлось допустить, что наряду с силой тяжести может оказывать влияние сила, которой обладала бы Луна, если бы двигалась, увлекаемая вихрями» [2, с. 154].