Читаем Научная революция XVII века полностью

И Ньютон ставит опыт. В призматический сосуд, наполненный водой (вероятно, в воду был добавлен также свинцовый сахар), он поместил стеклянную призму и наблюдал прохождение лучей через такую систему. Из этих опытов он вывел, что преломление всегда сопровождается дисперсией. Ахроматические линзы казались ему несбыточной мечтой. Случилось так, что здесь Ньютон не проявил своей обычной тщательности. Он использовал воду и стекло одинаковой дисперсионной способности. Если бы он использовал другую жидкость, а не воду с добавлением сахара, результат опытов был бы иной. Из весьма ограниченных экспериментов он сделал всеобъемлющий вывод, которого он затем придерживался с удивительной настойчивостью. Однако позднейшие опыты доказали его неправильность. Ньютон не стал внимательно изучать критические замечания, сделанные иезуитом Лукой из Льежа. Повторив ньютоновский эксперимент с призмой, тот нашел, что длина спектра не в пять раз больше его ширины, а всего в три с половиной раза. Как могло получиться, что два тщательных эксперимента могли столь сильно различаться? Этот факт не подвергся должному рассмотрению. Без сомнения, Ньютон полагал, что его опыт неоднократно повторялся и поэтому он не мог ошибиться. Хотя он и интересовался химией, ему все-таки не пришло в голову, что род стекла, из которого сделана призма, мог играть существенную роль в эксперименте. Таким образом, благодаря странным превратностям судьбы он проглядел важное открытие различия дисперсионной способности и, следовательно, возможность создания ахроматических линз.

Хотя Ньютон потерпел неудачу с телескопом-рефрактором, он добился поразительных результатов с телескопом-рефлектором, преимуществом которого является отсутствие хроматической аберрации. В то время отражательный телескоп был предметом значительного внимания. Николо Зуччи (1586—1670) рассматривается как первый конструктор такого телескопа, Марен Мерсенн во Франции предложил вариант рефлектора, как и шотландский математик и астроном Джеймс Грегори (1638—1675). Но они не сумели воплотить свои идеи на практике. Ньютон придумал свою собственную конструкцию и первым построил отражательный телескоп. Это было в 1668 г. Телескоп имел 6 дюймов в длину и 1 дюйм в диаметре, а его увеличение было от 30 до 40 раз. Позднее он изготовил больший инструмент, который преподнес Королевскому обществу в 1672 г. На нем надпись: «Изобретен сэром Исааком Ньютоном и изготовлен его собственными руками в 1671 г.» Телескоп был показан королю и изучен Робертом Гуком, Кристофером Реном и др. Он получил восторженные отзывы, и описание телескопа послали в Париж Гюйгенсу.

Открытия Ньютона были благосклонно приняты Королевским обществом, но как только они были опубликованы в «Philosophical Transactions», они вызвали нападки со стороны Линуса, Лукаса, Пардиса, Гука и Гюйгенса. Ньютон выл столь болезненно чувствителен к критике, что писал Лейбницу 9 декабря 1675 г.: «Я был настолько подавлен спорами, возникшими в результате публикации моей теории света, что проклинал себя за то, что в погоне за призраками имел глупость расстаться с благословенным покоем, столь существенным для меня».

Гук выдвинул волновую теорию света против ньютоновской корпускулярной теории. Ньютон ответил Гуку небольшим трактатом, в котором сопоставляется волновая теория света с теорией истечения световых частиц. В полемике с Гуком Ньютон набросал некоторые черты компромиссной теории, соединяющей волновые и корпускулярные представления. Прежде всего он указывает, что теория световых корпускул ни в коем случае не должна однозначно соединяться с найденным им законом распространения, преломления и отражения света. Однако даже эта теория, судьба которой вовсе не связана с судьбой однозначных и достоверных оптических законов, отнюдь не исключает волновых представлений. Колебания эфира, говорит Ньютон, необходимы для объяснения оптических явлений даже при допущении световых корпускул. Корпускулы света, попадая на преломляющие или отражающие поверхности, вызывают колебания эфира, как камень, брошенный в воду, вызывает волны на ее поверхности. Волны эфира могут иметь различные длины, и тогда они позволяют объяснить целый ряд оптических явлений.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже