Читаем Научная революция XVII века полностью

Нововведение Декарта можно пояснить следующим образом. Пусть нам дана последовательность отношений: 1/x = x/x2 = x2/x3 = ..., где первое отношение берется между однородными величинами, а остальные также являются однородными, так как получаются из первого умножением на очевидно однородное отношение x/x. Тогда получается, что мерой квадрата, куба и прочих степеней является число отношений, отделяющих их соответственно от выбранной единицы.

Плодотворность этого подхода трудно переоценить. Действительно, ведь античная математика, хотя и устанавливала соответствие между операцией сложения и откладыванием отрезков-слагаемых вдоль прямой линии, она не способна была представить умножение иначе, чем построение прямоугольника со сторонами, равными сомножителям, и в результате произведение отличалось по сути от сомножителей. Теперь же, как было показано, умножение (и аналогично все остальные действия) стало иметь своим результатом величину, однородную с сомножителями, т. е. отрезок, который находится путем отношений. Отсюда вытекает, что каждому отрезку x и многочлену Р(x) с рациональными коэффициентами можно поставить в соответствие другой отрезок y = Р(x). Это утверждение и составляет основу алгебраической геометрии Декарта, которую Лакруа в конце XVIII в. назвал аналитической геометрией.

Легко видеть, что новый подход давал возможность совершенно иной интерпретации алгебраических соотношений. Например, уравнение x2 + y2 = R2 не столько выражало факт равенства площадей трех квадратов, сколько определяло собой окружность радиуса R с центром в начале координат.

Правда, у самого Декарта еще не было прямоугольных координат, которые мы сегодня называем декартовыми (на самом деле это были произвольные косоугольные координаты), хотя остальные обозначения a, b, c (известных величин) и х, у, z (неизвестных величин) принадлежат самому Декарту.

Примером реализации нового подхода Декарта явилась знаменитая проблема Паппа, внимание к которой было привлечено Якобом Голиусом в 1631 г. Коротко проблема состоит в следующем: в плоскости дано п прямых; требуется найти на этой плоскости точку, такую что произведение отрезков, проведенных из этой точки под данным углом к n/2 прямым, находится в данном отношении к произведению таких же отрезков, проведенных к остальным n/2 прямым (для случая четного n; для нечетного n условия задачи несколько усложняются).

Детально рассматривая решение для случая n = 4, Декарт получает также классификацию решений для других значений. Он принимает одну из прямых за ось абсцисс, тогда ординатой искомой точки будет служить отрезок, проведенный из нее на абсциссу под данным углом. Затем Декарт показывает, что отрезок, проведенный из этой точки к любой другой прямой, может быть выражен через комбинацию двух неизвестных в виде αх + βx + γ, где α, β, γ определяются условиями задачи. Отсюда следует, что для данного числа n степень x в уравнении, соответствующем произведению отрезков, не будет превышать n/2, а в большинстве случаев она будет меньше. Поэтому для решения проблемы Паппа в случае 5 или меньшего числа прямых получается квадратное уравнение. Если число линий увеличивается, соответственно увеличивается трудность задачи, которая определяется повышением степени уравнения.

Вторая книга «Геометрии» посвящена подробному рассмотрению кривых, которые являются геометрическими местами точек, представляющих решение проблемы Паппа. В частности, там показывается, что для n ≤ 5 такие кривые являются коническими сечениями. Декарт подчеркивает в этой книге, что уравнение кривой содержит достаточно информации, чтобы определить ее геометрические свойства и характеристики, среди которых наиболее важной является нормаль к любой точке кривой. Поскольку нормаль к кривой в данной точке является перпендикуляром к касательной в этой точке, то правило определения нормалей, данное Декартом, эквивалентно решению задачи о нахождении касательной к кривой; эта последняя играла существенную роль в процессе возникновения дифференциального исчисления.

Рассмотрение уравнений, соответствующих различным кривым, приводит Декарта в третьей книге «Геометрии» к построению теории таких уравнений. Он доказывает сначала утверждение, что любой многочлен Р(x) с действительными коэффициентами может быть представлен в виде Р(x) = (x—a) (x— b)... (x—s), где a, b,..., s — корни уравнения Р(x) = 0. Затем Декарт формулирует основную теорему алгебры, гласящую, что уравнение n-й степени имеет в точности n корней (отметим, что впервые эта теорема была сформулирована А. Жираром в 1629 г.), и тут же предлагает путь ее доказательства.

Перейти на страницу:

Все книги серии Библиотека всемирной истории естествознания

Похожие книги

100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Прочая научная литература / Образование и наука / Научная литература / Путешествия и география
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература