Лазеры генерируют излучения в диапазоне световых электромагнитных волн. Свет имеет двойственную природу: с одной стороны это волна, характеризующаяся определенной частотой, амплитудой и фазой колебаний, с другой стороны – поток элементарных частиц, называемых фотонами. Каждый фотон представляет собой квант световой энергии.
Чтобы разобраться в сути работы лазера, необходимо вспомнить о строении атома. Согласно постулатам Бора, в атоме существует набор стационарных состояний (или уровней энергии), при которых атом не испускает электромагнитных волн. Стационарным состояниям соответствуют стационарные орбиты, по которым ускоренно движутся электроны, но излучение света при этом не происходит.
При переходе атома из одного стационарного состояния в другое испускается или поглощается один фотон. При поглощении фотона атом переходит на более высокий энергетический уровень, то есть возбуждается, а излучая энергию, возвращается в основное состояние. При этом процесс поглощения квантов является вынужденным, а излучение – самопроизвольным. Но самопроизвольные (спонтанные) переходы атомов с более высокого энергетического уровня на более низкий носят случайный характер.
Однако еще в 1917 году Альберт Эйнштейн предположил, что можно заставить (вынудить) атом перейти с высокого на более низкий уровень энергии. Это предположение оказалось пророческим. Действительно, если на возбужденный атом воздействовать фотоном, обладающим такой же энергией, что и атом, то атом перейдет в невозбужденное состояние. При этом он излучит новый фотон с точно такими же характеристиками, как у воздействующего на него фотона. Именно эта особенность реализована в принципе работы лазеров.
Квант световой энергии, воздействуя на возбужденный атом рабочей среды, заставляет его излучить такой же квант энергии, что приводит к усилению светового потока. Лазер включает в себя активную (рабочую) среду, которая может быть твердой, жидкой, газообразной и даже плазмой. Например, твердотельный рубиновый лазер или газовый гелий-неоновый лазер и т. д.
Для усиления потока света необходимо, чтобы возбужденных атомов, излучающих фотоны, было как можно больше. Однако в состоянии термодинамического равновесия это условие не выполняется, поэтому активную среду выводят из состояния равновесия с помощью источника энергии, который называется системой накачки.
Системы накачки выбираются в зависимости от типа активной среды; они могут быть оптические, электрические, химические. Например, для гелий-неоновой активной среды в качестве системы накачки используют электрический разряд.
С целью повышения воздействий на возбужденные атомы активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное – через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, воздействует на возбужденные атомы и заставляет излучать фотоны.
Схема лазера: 1 – активная среда; 2 – энергия накачки лазера; 3 – непрозрачное зеркало; 4 – полупрозрачное зеркало; 5 – лазерный луч