Читаем Научно-эзотерические основы мироздания. Жить, чтобы знать. Книга 2 полностью

<p>Двухщелевой эксперимент</p>

Представьте себе, что у вас имеется источник ускоренных электронов (электронная пушка). На пути потока электронов находится экран с двумя щелями. За экраном стоит детектор – прибор для регистрации электронов, прошедших через щели. Поток электронов, проходя через щели, попадает на детектор. По результатам регистрации строится график распределения электронов по длине детектора.

Двухщелевой эксперимент

Если бы у нас была пушка не с электронами, а с мелкими ядрами, то мы увидели бы, что большая часть ядер, прошедших через щели, скапливается напротив этих щелей. С учетом некоторого рассеяния сумма ядер, зарегистрированных напротив щелей, будет равна количеству ядер, вылетевших из пушки.

В случае с электронами наблюдается совершенно другая картина. Из пушки идет поток электронов, а на детекторе фиксируется наложение волн (интерференция).

Вначале решили, что это явление вызвано взаимодействием электронов между собой на пути от электронной пушки к детектору. Было решено испускать электроны не пучком в большом количестве, а поодиночке, чтобы на всем пути от пушки до детектора каждый электрон не мог столкнуться с другим электроном.

И что же? Полученная картина не изменилась: на детекторе по-прежнему фиксируется интерференция волн. Получается, что электроны ведут себя не как материальные объекты, а как волны, проходящие одновременно через обе щели.

Тогда ученые поставили рядом с одной щелью счетчик электронов, чтобы узнать, сколько из них пролетело через первую щель, а сколько через вторую. И что вы думаете? Электроны стали вести себя как отдельно взятые материальные объекты, счетчик начал считать частицы, а волновая интерференционная картина исчезла. Вот что представляет собой микромир.

Этот эксперимент явился серьезным ударом по материалистической картине бытия, неотъемлемым атрибутом которой являлся постулат о существовании независимого от наблюдателя внешнего мира.

<p>Влияние приборов на измерения</p>

Но это еще не все проблемы, возникшие в процессе исследования микромира. Ученые установили, что, проводя эксперименты с элементарными частицами, исследователь сам себе мешает собственными действиями. Дело в том, что приборы, в которых мы регистрируем частицы или проводим измерения, по своей природе всегда объекты макроскопические. При точном измерении одной из величин (например, координаты) с помощью соответствующего прибора другая величина (импульс) в результате взаимодействия частицы с прибором претерпевает сильное изменение.

Даже простейший эксперимент по измерению с помощью микроскопа координаты частицы (например, электрона) подтверждает наличие искажения. Дело в том, что для определения положения электрона его необходимо «осветить» светом возможно более высокой частоты. В результате соударения фотона с электроном изменяется импульс последнего. Прибор искажает то, что исследует. Сам акт наблюдения изменяет наблюдаемое.

Принцип дополнительности Бора

В результате Нильсом Бором был сформулирован принцип дополнительности, который гласит: «Получение в эксперименте информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к данным».

Объективная реальность зависит от прибора, а в конечном счете – от наблюдателя. И наблюдатель из зрителя становится действующим лицом.

В результате всей этой неопределенности, вероятности и дополнительности Нильс Бор дал так называемую «копенгагенскую» интерпретацию сути квантовой теории: «Раньше было принято считать, что физика описывает Вселенную. Теперь мы знаем, что физика описывает лишь то, что мы можем сказать о Вселенной» [11].

Из всего вышесказанного можно сделать вывод, что «копенгагенизм» постулирует Вселенную, которая магически создается человеческой мыслью.

«Копенгагинистами» назывались сторонники Н. Бора, которые считали, что в основе природы лежит неопределенность (индетерминизм), а обсуждаемая особенность квантовой теории есть адекватное отображение этого мира. Именно этой точки зрения придерживались Бор, Гейзенберг, Борн, Дирак, Паули и многие другие.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже