У кораблей «Восток», у которых спускаемый аппарат был сферической формы и, естественно, обладал только силой лобового сопротивления, рассеивание точек приземления достигало 250–300 км. Если на спускаемый аппарат действует аэродинамическая подъемная сила, то, управляя ее вертикальной составляющей, можно управлять и траекторией движения аппарата в земной атмосфере и, следовательно, дальностью этого движения (регулируя траекторию «круче» — «положе»). Последнее позволяет даже при небольших значениях аэродинамического качества[4] спускаемого аппарата корабля «Союз» (0,2–0,3) снизить разброс точек приземления до нескольких десятков километров (а в принципе и до нескольких километров).
Если при спуске аппарата не используется подъемная сила, то такой тип спуска называется
Небольшое аэродинамическое качество спускаемых аппаратов кораблей «Союз» снижает максимальные перегрузки при движении аппарата в атмосфере до значений, соответствующих силе воздействия на космонавтов, превышающей лишь в 3–4 раза их вес. Этот аппарат, представляющий собой осесимметричное тело, движется при спуске в атмосфере своей затупленной частью вперед. Причем если бы центр массы аппарата располагался на оси симметрии, то никакой подъемной силы не возникло бы. Поэтому элементы конструкции и расположение оборудования выбраны такими, чтобы центр масс был смещен относительно оси симметрии спускаемого аппарата.
Чтобы управлять дальностью движения, надо менять вертикальную составляющую подъемной силы. Это можно делать, либо меняя угол атаки, как это делается в самолетах (в нашем случае надо было бы менять положение центра масс, что представляется довольно затруднительным), либо меняя величину проекции подъемной силы на вертикальную плоскость за счет управления креном аппарата. Этот способ и используется на корабле «Союз».
Корпус спускаемого аппарата защищен снаружи теплозащитным покрытием, предохраняющим его конструкцию, оборудование и экипаж от воздействия потока раскаленного газа, окружающего аппарат при его спуске. Напомним, что температура газа перед лобовым щитом достигает 10 000°. На боковой поверхности аппарата имеются три иллюминатора. На одном из них (среднем), который при орбитальной ориентации (когда продольная ось корабля лежит в горизонтальной плоскости) «смотрит» вниз на Землю, установлен визир-ориентатор, используемый экипажем для визуальной ориентации по Земле при ручном управлении и для ориентации при сближении.[5]
Внутри спускаемого аппарата размещаются кресла экипажа, парашютные системы, двигатели мягкой посадки, система управляющих реактивных двигателей, используемых для ориентации аппарата при спуске, оборудование и аппаратура скафандров, систем жизнеобеспечения, управления, ориентации, радиосвязи, пеленгации, автоматики приземления, груз, возвращаемый со станции на Землю. В верхней сужающейся части спускаемого аппарата имеется люк, через который экипаж может переходить в орбитальный отсек, пристыкованный к верхнему торцовому шпангоуту спускаемого аппарата.
В орбитальном отсеке размещается оборудование систем жизнедеятельности, часть радиоаппаратуры, автоматика стыковки, аппаратура сближения. Здесь же в основном находится груз, доставляемый одновременно с экипажем на орбитальную станцию (часть груза размещается в спускаемом аппарате). В верхней части отсека (противоположной месту стыковки со спускаемым аппаратом) имеется активный стыковочный агрегат. На внешней поверхности отсека установлены часть антенн системы сближения. Общий объем орбитального отсека и спускаемого аппарата составляет около 10 м3.
А. Иванов , Анатолий Степанович Иванов , Борис Викторович Раушенбах , Е. А. Карпов , Евгений Анатольевич Карпов , К. Д. Бушуев , Константин Давыдович Бушуев , П. А. Агаджанов , Павел Артемьевич Агаджанов
Научная литература / Прочая научная литература / Образование и наука