Читаем Наука Единства полностью

Когда любые частоты света или длины волны движутся в пространстве, они движутся с тем, что считается постоянной скоростью — грубо говоря, 300.000 км с секунду. Однако это наблюдение не рассматривает свет, как движущийся через эфирную среду с данной скоростью. Большинство людей уверено, что ничто во Вселенной не может превысить эту скорость. Поэтому скорость света или “с” — самое быстрое движение или вибрация, которую с нашей точки зрения мы обычно распознаем здесь на Земле, в третьем измерении. Как опубликовано в газете Нью-ЙоркТаймс в мае 2000 года, необычные условия в лаборатории, такие как трубка с цезием под высоким давлением, освещаемая светом, падающим “сбоку”, может создать скорость света в триста раз быстрее, чем “с”. По сути этот эксперимент идентичен экспериментам Бирдена со “скалярной волновой интерферометрией”.

Отсюда, если бы мы сгруппировали все возможные вибрации в таблицу, то получили бы полное отсутствие движения внизу таблицы, а скорость света — наверху. Скорость света определяет границу вибраций в нашей реальности. Вопреки положению Эйнштейна, объект, движущийся со скоростью света, не может создавать в материи бесконечную плотность; источники, такие как Ра, рассматривают скорость света как вершину вибраций в третьей плотности или измерении. Если мы двигаемся в область или “домен”, в котором эфир движется с более высокой скоростью, скорость света меняется, и материя естественно “фокусируется” в этом новом вибрационном уровне. Это подтверждается наблюдениями торнадо и других аномалий, а также аномалиями вихрей, демонстрирующих изменения пространства, времени и материи.

Самые первые слова Книги Бытия в Библии таковы: “В начале Бог сказал: “Да будет свет”, и стал свет”. Мы можем продемонстрировать, что все вибрации, сотворяющие нашу Вселенную, являются разными формами одной единой сознательной энергии. Без наблюдения ярко-красного, голубого, зеленого, желтого, фиолетового и оранжевого Света в повседневной жизни, мы отказываем себе во внутреннем знании и наслаждении своим существованием. Жизнь без цвета “скучная”, “серая”, “унылая” и “черная”.

13.4 ГЕОМЕТРИЯ

Геометрия завершает основную триаду нашего восприятия фундаментальных строительных блоков вибрации во Вселенной — эта триада: свет, звук и геометрия. Наряду с геометрией, которую мы уже обсуждали, в физической форме вдруг появляются звуки музыки и цвета радуги. Внезапно, абстрактные концепции гармонии и цвета раскрывают структуры, состоящие из прямых и кривых линий, которые затем мы можем моделировать и строить вещи. Хотя мы можем видеть цвет и слышать звук, обычно мы не думаем о физической геометрической форме в двух или трех измерениях, которая будут точно представлять эти вибрации. Однако многие исследователи, такие как Джеральд Хокинс, Бакминстер Фуллер и Ганс Дженни, показали, что звуковые вибрации будут образовывать определенные геометрические паттерны. Также они доказали: мы видим то, что вибрирует, вместо воздуха, который обычно мы не видим.

На самом деле Джеральд Хокинс не совершил свои открытия, изучая вибрацию. В его случае, он пришел к своим выводам после многих лет исследования явления “кругов на полях”, когда сложные геометрические паттерны появляются буквально за одну ночь на различных полях всего мира. Обычно они видны только с воздуха. Изучив сотни такие образований, Хокинс осознал, что некоторые паттерны повторяются, и общность всех паттернов выражается простыми двумерными формами, такими как треугольник, квадрат и шестиугольник, совершенно вписанными в окружность так, что все вершины формы касаются окружности. К его изумлению, площадь поверхностей внутренних геометрий, будучи разделена на площадь внешних кругов, демонстрировала отношения, ответственные за вибрации музыки в Октаве, — “диатонические отношения”, о которых мы упоминали выше. Именно это показал Пифагор на однострунном “монохорде”, только вместо отношения длин струны, у нас есть отношение геометрии, указывающее на то же самое. Хокинс осознал, что это абсолютно новая и нераспознанная серия теорем в геометрии, и ни один ученый, с которым он консультировался, не знаком с этими концепциями. Итак, в двух измерениях мы можем понимать звук как “плоскую” геометрическую вибрацию (такую как треугольник), появляющуюся внутри “плоской” окружности.

Диатонические геометрические доказательства Хокинса

13.4 ВОЗДУШНЫЙ ШАР ФУЛЛЕРА

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже