А теперь вернемся мысленно в 50-е годы, время, когда академик С. А. Лебедев создавал первую отечественную ЭВМ. Трогательная и смешная картина предстанет перед нами: вся Академия наук СССР с большим вниманием следит, как эта огромная машина часами решает задачи, на которые современным компьютерам нужны доли секунды! А в 30-е годы восхищение вызывали машины, которые просто умели выполнять арифметические действия. Сейчас эту возможность реализует обычный карманный калькулятор.
Согласитесь — динамика просто поразительная! Но мы уже успели привыкнуть к приставкам «мега-» и «гига-» в характеристиках современных компьютеров, и они нас не удивляют. Любой школьник знает, как работать и развлекаться на «компе», некоторые даже умеют собирать и разбирать его, как конструктор. Но многие ли знают, как устроен компьютер, на каких физических принципах основана его работа? Думаю, нет. А между тем именно физика и физические открытия сделали возможным создание ЭВМ в том виде, в каком они существуют сейчас.
По сути, вся история ЭВМ определяется серией замечательных физических открытий в области электроники. Строго говоря, вычислительные машины существовали и до XX века: это абак, счеты, логарифмические линейки, арифмометры, счетные машины Паскаля и Бэббиджа и некоторые другие. Все это — механические устройства с очень ограниченными возможностями. История же собственно электронных вычислительных машин (рис. 1) начинается в двадцатом веке и связана с изобретением в 1906 году американским инженером Ли де Форестом вакуумного триода. На основе триодов были созданы ЭВМ так называемого первого поколения, начинающего свою историю в 40-е годы. Это поколение компьютеров-монстров, занимавших по своим размерам целые комнаты и потреблявших мощности, достаточные для работы небольшого завода. Однако, несмотря на такую громоздкость, производительность этих машин была весьма скромной.
Рис. 1.
Качественное изменение ЭВМ произошло после еще одного эпохального открытии физики — изобретения в 1947 году Джоном Бардином, Уолтером Браттейном и Уильямом Шокли полевого транзистора. Применение полупроводниковых транзисторов вместо вакуумных ламп (триодов) позволило существенно уменьшить размеры и энергопотребление машин второго поколения и повысить их быстродействие и надежность.
Дальнейшее развитие компьютеров связано с использованием интегральных схем, впервые изготовленных в 1960 году американцем Робертом Нойсом. Интегральная схема — это множество, от десятков до миллионов, транзисторов, размещенных на одном кристалле полупроводника. Использование интегральных схем (компьютеры третьего поколения), больших и сверхбольших интегральных схем (четвертое поколение) привело к значительному упрощению процесса изготовления ЭВМ и увеличению их быстродействия. В 80-е годы началось изготовление персональных компьютеров, которые постепенно приобрели современный вид. Примерно тогда же появились первые мобильные компьютеры, или ноутбуки. Огромной производительности достигли многопроцессорные вычислительные комплексы — суперкомпьютеры.
Почему же именно изобретение триода и транзистора определило весь путь развития компьютеров? Нужно вспомнить об основных принципах работы компьютера.
Сердце современного компьютера — это его центральный процессор. Основная функция процессора — обработка информации, т. е. выполнение различных операций над данными. А так как данные в современных ЭВМ представляются в двоичном виде, то и операции с ними производятся на основе двоичной логики, или так называемой булевой алгебры.
Булева алгебра (названа в честь английского математика XIX века Джорджа Буля) рассматривает величины, принимающие только два значения — 0 или 1. Значение булевой величины можно представлять как ложность или истинность какого-либо утверждения (0 — ложь, 1 — истина). Поэтому с такими величинами можно производить различные операции — так же, как мы оперируем с утверждениями при рассуждениях. Основные операции — это