А 17 сентября череда «исполняющих обязанности» в его руководстве наконец-то раз и навсегда оборвалась. Но кандидатура нового начальника поначалу не вызвала энтузиазма ни у кого. Многие даже говорили, что Председатель Комитета начальников штабов просто отмахнулся в ответ на просьбу Президента назначить руководителем атомного проекта человека именно из его ведомства. Никому не известному полковнику Лесли Гровсу доверили два миллиарда долларов, сумму по тем временам астрономическую. Для сравнения скажем, что стоимость серийного Боинга В-29, самого дорогого американского самолета того периода, на 1942 год была определена в 1 миллион 403 тысячи 623 долларов и 86 центов. Обычные же авиабомбы обходились налогоплательщикам всего по доллару за фунт весу.
Такая большая сумма отнюдь не была взята с потолка. Предстояло не просто спроектировать и изготовить очередное новое оружие. Ставилась задача поднять с нуля отрасль промышленности, создающую то, на что оказалась неспособна сама природа. В Вашингтоне здраво рассудили, что авторитета полковничьих погон для такого дела маловато и через 5 дней после назначения на новую должность Гровс получил звезду бригадного генерала.
2 декабря 1942 года в подвале городского стадиона в Чикаго произошло великое событие — заработал первый в мире атомный реактор. В нем путем переоблучения обогащенного 235-го урана блоками из смеси урана-235 и -238 получался элемент, несуществующий в природе — плутоний-239. Что характерно — это адское устройство создали в недрах многомиллионного города: люди не понимали пока, с чем имеют дело.
Начало XX века было ознаменовано не только важнейшими научными открытиями, но и тем, что мировая наука вышла на новый уровень интеграции. На какое-то время удалось практически полностью стереть препоны, мешавшие обмену знаниями между странами и народами. Это не только позволило к концу 30-х годов подойти к решению проблемы атомной энергии, но и создало среду, в которой атомная бомба могла быть реализована. Но делать оружие в обстановке открытого международного сотрудничества невозможно. В 1938 году стартовал британский национальный атомный проект. В 1939-м работы по атомной бомбе начались в Германии, но то, что многие ведущие физики в этой стране были евреями, сыграло решающую роль— Гитлер бомбу не получил. В СССР военные аспекты атомной энергии начали изучать до Отечественной войны, но в практическую плоскость работы эти вышли лишь после ее завершения.
Америка стала прибежищем для многих ученых, которых пришедшие к власти в Европе националистические режимы вынудили покинуть родину. Вот лишь несколько фамилий: немец по гражданству Альберт Эйнштейн, венгр Лео Сциллард, итальянец Энрико Ферми — звезды первой величины мировой физики. Америка предоставила им возможность заниматься тем, чем они хотели по 12–15 часов в сутки год за годом без выходных и отпусков.
В дни и ночи «битвы за Англию» британскому правительству стало ясно, что германская авиация не позволит создать атомную промышленность нигде в пределах «Туманного Альбиона». Было принято решение о переносе работ по урану в Канаду, но к концу 1941 года вскрылось еще одно обстоятельство, роковым образом сказавшееся на судьбе английского атомного проекта «Тьюб Эллойз» (“Tube Allows” — «сплавы для труб»). Катастрофические потери торгового флота привели Англию на грань экономической катастрофы и на «супербомбу» средств уже не было. Разведка же доносила о строительстве все новых и новых атомных объектов в Германии. Тогда было решено предать полученные результаты, оборудование и часть запасов радиоактивных материалов США, а также направить туда несколько сот ученых и инженеров. Подразумевалось, что Вашингтон потом «поделится» совместно сделанным с добрым союзником.
Ни в коей мере не пытаясь умалить участие в «манхэттенском проекте» коренных американцев, трудно не заметить роли тех, кто приехал в Америку в бурные тридцатые-сороковые.
К моменту начала проектно-конструкторских работ по атомной бомбе теоретическая часть задачи была в основном решена. Было известно, что при попадании в ядро атома «медленного» нейтрона атом урана разваливается с образованием двух атомов меньшей массы и выделением одного или нескольких новых нейтронов. При этом суммарная масса всех «осколков» меньше массы исходного ядра — оно испускает дополнительные частицы с очень высокой энергией. Если интенсивность реакции низкая, то вторичных нейтронов мало и блок делящегося материала просто нагревается, а выделяемая энергия описывается «угольным эквивалентом», так работает атомная электростанция. Но если нейтронов достаточно много, то процесс нарастает лавинообразно и происходит взрыв. Мерой энерговыделения такого процесса стал «тротиловый эквивалент», т. е. сколько тонн обычной взрывчатки производят взрыв такой же силы, как и данная атомная бомба.