Эта реакция должна происходить в два этапа: сначала разрывается связь в молекуле O2, а затем два атома кислорода присоединяются к углероду. Первый этап требует затраты энергии. Он не может происходить при тех энергиях, которые имеются при обычной температуре. В конце концов, уголь может соприкасаться с воздухом без горения. При обычных температурах тепловой энергии недостаточно для расщепления молекулы кислорода на два атома. Но если мы подведем тепло извне от зажженной спички или горящей щепки, то реакция начнется. Надо подвести тепло только для возникновения реакции, так как на втором ее этапе, при образовании СO2, выделяется больше энергии, чем требуется для расщепления O2 (рис. 40).
Рис. 40.
Первая связь принадлежит к типу «затычка и дыра», вторая — к типу — «электронные близнецы». Поэтому энергия, необходимая для дальнейшего расщепления O2, поставляется самим процессом горения. Таким образом, при горении угля энергия выделяется в виде тепла, хотя часть энергии, освобождаемой на втором этапе, идет на инициирование дальнейших реакций. Полезное тепло равно избытку энергии, выделяющейся во второй стадии, над энергией, потребной для первой.
Раз начавшись, образование двуокиси углерода продолжается до тех пор, пока не израсходуется весь углерод. Выделяется большое количество тепла; чистый выигрыш энергии составляет 0,67
Горение угля — это простейшая форма выделения химической энергии. Аналогичный процесс происходит и при горении метана или других углеводородов. И здесь требуется начальное тепло, чтобы расщепить не только молекулы O2, но и молекулы угле водорода. После этого углерод соединяется с кислородом и дает двуокись углерода, а водород соединяется с кислородом и дает воду. Химическая реакция горения метана показана на рис. 41.
Рис. 41.
Так как в СН4 и O2 связи принадлежат к типу «электронных близнецов», а в СO2, Н2O — к типу «затычка и дыра», чистый выигрыш энергии в этой реакции очень велик. Поэтому метан и другие углеводороды дают сильное пламя и много тепла. Однако в отличие от горения угля, получается не только СO2, но и вода. В пламени содержится вместе с раскаленным СO2 водяной пар. Если подержать холодный кусок стекла в пламени свечи или горящего дерева, то мы увидим на стекле конденсированный водяной пар, которого не получится в пламени чистого угля.
Таким же образом любая молекула, состоящая из углерода, водорода и кислорода, может гореть, т. е. превращаться в углекислый газ и водяной пар, соединяясь с кислородом воздуха. Такие молекулы, как молекулы спирта или сахара, нуждаются в меньшем количестве кислорода для горения, так как в них самих содержится известное количество кислорода.
Рис. 42.
Химические реакции, производящие энергию, всегда должны начинаться с превращения молекул со слабыми связями в молекулы с прочными связями. Разница в энергиях сильной и слабой связи высвобождается. СO2 и вода — это молекулы, с прочными связями; то же относится и к большинству молекул, в которых атомы связаны с кислородом. Однако молекулы, содержащие углерод и водород, связаны слабо, они легко разрушаются и рекомбинируют, могут образовывать длинные цепи и способны собираться в сложные структуры. Если их слабые связи превращаются в сильные связи с кислородом в результате какого-либо сложного процесса, то выделяется энергия. Благодаря этим свойствам они играют важную роль в живой материи.
Агрегатные состояния