Читаем Наука и удивительное(Как человек понимает природу) полностью

Когда мы достигаем самых низших ступенек квантовой лестницы — макромолекул и кристаллов, соотношение между размером и устойчивостью следует применять с некоторыми предосторожностями. Так как макромолекулы и кристаллы очень велики, можно подумать, что они крайне неустойчивы. Однако здесь неустойчивость, которая следует из соотношения размер — устойчивость, относится только к несущественным свойствам этих объектов. Например, макромолекулы не обладают жесткостью, их можно изгибать и складывать с очень небольшой затратой энергии; в кристаллах можно возбуждать внутренние колебания, затрачивая весьма малые энергии, — такие колебания возникают при действии обычных звуковых волн. Однако важные структурные свойства подобных объектов, например атомная структура макромолекул или правильное расположение атомов в кристаллической решетке, вполне устойчивы. Такие свойства определяются электронными конфигурациями атомов, и, следовательно, их устойчивость равносильна устойчивости электронных конфигураций в атомах.

Каждая ступенька на квантовой лестнице отвечает состоянию материи при определенных условиях (рис. 49).

Рис. 49. «Квантовая лестница».

Чем ниже ступенька, тем выше организация и дифференциация материи. Каждый шаг вниз по лестнице позволяет материи приобретать специфические формы, которые становятся тем разнообразнее, чем ниже мы спускаемся. На самой высшей ступеньке, о которой мы только что говорили, протоны, нейтроны и электроны движутся совершенно беспорядочно. На ближайшей более низкой ступеньке, в плазме, протоны и нейтроны находятся в упорядоченном виде в ядрах, но электроны по-прежнему находятся в беспорядочном движении. Еще ниже электроны присоединяются к ядрам и образуют атомы; они принимают свои типичные волновые конфигурации, характерные для атомов.

На следующей, более низкой ступеньке атомы соединяются в молекулы. Появляется широкая дифференциация, существует бесчисленное множество способов соединения атомов в молекулы, каждый соответствует появлению определенного вещества. На уровне макромолекул разнообразие еще больше: на этой ступеньке появляется живая материя в ее самых различных формах и с ее широчайшими возможностями. Обмен энергией достаточно мал для существования крупных комплексов молекул, клеток и организмов, но в то же время достаточно велик для стимуляции роста и развития этих объектов. На самой низшей ступеньке все разнообразие, любая дифференциация застывает, образуя неизменные картины закристаллизовавшегося вещества.

<p>Элементарные частицы</p>

Есть ли на квантовой лестнице ступенька, находящаяся выше состояния с отдельными протонами и нейтронами? Ответ на этот вопрос приводит нас к границе современной физики элементарных частиц.

Вспомним, что для разложения атомного ядра нужны энергии порядка многих миллионов электроновольт. Современные исследования в области высоких энергий не остановились на этом пределе. За последние 10 лет были построены ускорители, на которых достигались энергии во много сотен миллионов электроновольт. На некоторых устройствах удалось преодолеть даже миллиардный рубеж. В Женеве усилиями четырнадцати европейских наций был построен ускоритель, дающий 28 миллиардов электроновольт. Аналогичное несколько большее устройство работает в Брукхэвенской национальной лаборатории на Лонг-Айленде.

Основное назначение этих устройств уже не состоит в изучении структуры ядра. Скорее на них изучается строение нейтронов и протонов. Здесь сделан шаг на следующую, более высокую ступеньку квантовой лестницы. Ставится вопрос: существует ли предел устойчивости нуклонов, есть ли такая энергия, выше которой становится заметным внутреннее строение протонов и нейтронов? Мы исследуем природу самих элементарных частиц. Вследствие очень малых размеров этих единиц мы ожидаем весьма высокого предела устойчивости, значительно более высокого, чем для атомных ядер. Действительно, достаточно было применить энергии в несколько сот миллионов электроновольт, чтобы были найдены указания на внутреннюю структуру.

При воздействии на вещество столь больших энергий наблюдаются явления, которые до сих пор еще не совсем понятны. Они показывают, что нуклоны обладают структурой, но мы не знаем как следует, что это за структура. В нашей книге мы ограничимся кратким описанием таких явлений, не особенно вдаваясь в их детали.

При этих энергиях наблюдаются явления и факты, которые можно отнести к четырем группам. Перечислим их:

1. Образование квантов ядерного поля — мезонов.

2. Существование антивещества.

3. Появление «странных» частиц.

4. Короткое время жизни частиц.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже