1. Первым порождением числа является совокупление многих как таковых, т. е. многих, каждое из которых положено лишь как одно
, – нумерация. Так как одни внешни друг другу, то они представляются под каким-нибудь чувственным образом и операция, посредством которой порождается число, есть сосчитывание по пальцам, по точкам и т. п. Что такое четыре, пять и т. д., это может быть лишь показано. Остановка в счете, будет ли совокуплено столько-то одних или иное их количество, есть нечто случайное, произвольное, так как граница внешня. Различие численности и единицы, появляющееся в дальнейшем развитии видов исчисления, служит основой системы чисел – двоичной, десятеричной и т. д.; такая система покоится в общем на произвольном выборе той численности, которая постоянно должна снова и снова быть взята как единица.Возникшие посредством нумерации числа
снова подвергаются нумерации; и, поскольку они положены так непосредственно, они еще определены без всякого соотношения друг с другом, безразличны к равенству и неравенству, их величины по отношению друг к другу случайны; они поэтому вообще неравны; это – сложение. Что 7 и 5 составляют 12, это узнают таким образом, что к 7 принумеровывают на пальцах или как-нибудь иначе еще 5 одних, результат каковой операции сохраняют затем в памяти, помнят наизусть, ибо здесь нет ничего внутреннего. И точно так же узнают посредством сосчитывания на пальцах и т. д., что 7 × 5 = 35; знают это тем путем, что к одной семерке принумеровывается еще одна семерка, повторяют это пять раз, и полученный результат также запоминается наизусть. С трудом этого нумерирования, нахождения сумм, произведений навсегда покончено готовой таблицей сложения или умножения, которую нужно лишь заучить наизусть.Кант рассматривает (во Введении к «Критике чистого разума», раздел V) предложение: 7 + 5 = 12 как синтетическое предложение. «Можно было бы, – говорит он, – сначала, правда, подумать (конечно!), что это чисто аналитическое предложение, вытекающее, согласно закону противоречия, из понятия суммы
пяти и семи». Понятие суммы ничего более не означает, кроме того абстрактного определения, что эти два числа должны быть совокуплены, и притом как числа внешним, т. е. чуждым понятию, образом, т. е. означает, что начиная с 7 следует продолжать нумерацию до тех пор, пока не будут исчерпаны долженствующие быть прибавленными одни, численность которых определена числом 5; полученный результат носит уже заранее известное название двенадцати. «Однако, – продолжает Кант, – при ближайшем рассмотрении мы находим, что понятие суммы 7 и 5 ничего более не содержит в себе, кроме соединения этих двух чисел в одно-единственное, чем вовсе еще не мыслится, каково это единственное число, соединяющее в себе те два числа». «Сколько бы я ни расчленял свое понятие о таковой возможной сумме, я все-таки не встречу в нем двенадцати». С мышлением суммы, с расчленением понятия, переход от указанной задачи к получающемуся результату в самом деле не имеет ничего общего. «Нужно выйти за пределы этих понятий, прибегнуть к помощи созерцания, пяти пальцев и т. д. и, таким образом, присоединить эти единицы данных в созерцании пяти к понятию семи», – прибавляет он. Пять в самом деле дано в созерцании, т. е. есть совершенно внешняя сочетанность произвольно повторявшейся мысли, одного; но 7 есть столь же мало понятие; здесь нет понятий, за пределы которых нужно было бы выходить. Сумма 7 и 5 означает чуждое понятию соединение этих двух чисел; это столь чуждое понятию нумерирование, продолжающееся от 7 до тех пор, пока не будут исчерпаны пять единиц, можно назвать сочетанием, синтезированием ровно с таким же правом, как и нумерацию, начинающую с одного, – синтезированием, которое, однако, носит совершенно аналитический характер, так как связь здесь всецело искусственная, в ней нет ничего такого и в нее не привходит ничего такого, что не наличествовало бы перед нами совершенно внешним образом. Требование сложить 7 с 5 относится к требованию считать вообще как требование продолжить прямую линию к требованию провести прямую линию.