Читаем Наука о данных. Базовый курс полностью

После того как форма аналитической записи разработана, необходимо извлечь и объединить эти записи в набор данных для анализа. Когда записи созданы и сохранены, например, в базе данных, мы получаем то, что и называют базовой аналитической таблицей — набор данных, которые используются в качестве входных для алгоритмов машинного обучения. Следующая глава познакомит вас с областью машинного обучения и некоторыми из самых распространенных алгоритмов, используемых в науке о данных.

<p>Глава 4. Основы машинного обучения</p>

Наука о данных — это партнерство между специалистом по данным и компьютером. В главе 2 мы описали жизненный цикл процесса CRISP-DM, которому следует специалист по данным. CRISP-DM определяет последовательность принимаемых им решений и действия, которые помогут их воплотить. Основные задачи специалиста по данным в цикле CRISP-DM сводятся к тому, чтобы определить проблему, спроектировать набор данных, подготовить их, принять решение о том, какой тип анализа будет использован, а затем оценить и интерпретировать результаты. Вклад компьютера в этом партнерстве заключается в его способности обрабатывать данные и искать закономерности. Машинное обучение — это область исследований, которая разрабатывает алгоритмы для выявления компьютером закономерностей в данных. Алгоритмы и методы машинного обучения в основном применяются на этапе моделирования в CRISP-DM. Процесс машинного обучения представляет собой два последовательных этапа.

На первом алгоритм машинного обучения применяется к набору данных для выявления в нем закономерностей. Сами закономерности могут быть представлены разными способами. Позже в этой главе мы опишем наиболее популярные из них: деревья решений, регрессионные модели и нейронные сети. Эти представления закономерностей известны как модели, поэтому и сам этап жизненного цикла CRISP-DM называется этапом моделирования. Проще говоря, все алгоритмы машинного обучения создают модели из данных, но каждый из них разработан для создания моделей, использующих определенный тип представления.

На втором этапе, когда модель создана, она применяется для анализа. В ряде случаев решающее значение имеет структура модели, которая показывает, какие именно атрибуты являются важными для конкретной области определения. Например, мы могли бы применить алгоритм машинного обучения к набору данных пациентов, уже перенесших инсульт, а затем использовать такую структуру модели, которая распознавала бы факторы, тесно связанные с инсультом. Существуют модели для маркировки или классификации новых объектов. К примеру, основная цель модели спам-фильтра состоит в том, чтобы маркировать входящие электронные письма, а не выявлять атрибуты спам-сообщений.

<p>Обучение с учителем и без</p>

Большинство алгоритмов машинного обучения можно отнести либо к обучению с учителем, либо к обучению без учителя. Цель обучения с учителем состоит в том, чтобы научить алгоритм сопоставлять разные значения разных атрибутов объекта со значением заданного атрибута этого же объекта, известного как целевой атрибут. Например, когда обучение с учителем применяется для спам-фильтра, алгоритм пытается изучить функцию, которая сопоставляет атрибуты, описывающие электронную почту, со значением (спам / не спам) целевого атрибута; функция, которую изучает алгоритм, является моделью спам-фильтра. В этом контексте искомая алгоритмом закономерность является функцией, которая сопоставляет значения входных атрибутов со значением целевого атрибута, а модель, которую возвращает алгоритм, является компьютерной программой, выполняющей эту функцию. По сути, обучение с учителем осуществляется путем поиска одной из множества функций, которая наилучшим образом отображает связь между входными и выходными данными. Однако для любого набора данных разумной сложности существует так много комбинаций входных данных и их возможных сопоставлений с выходными данными, что алгоритм не может испробовать их все. Поэтому каждый алгоритм машинного обучения предпочитает определенные типы функций во время поиска. Эти предпочтения известны как смещение обучения алгоритма. Реальная проблема в использовании машинного обучения состоит в том, чтобы найти алгоритм, смещение обучения которого лучше всего подходит для конкретного набора данных. Как правило, для того, чтобы выяснить, какой из алгоритмов лучше всего работает с конкретным набором данных, требуются эксперименты.

Перейти на страницу:

Похожие книги

C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных
Разработка приложений в среде Linux. Второе издание
Разработка приложений в среде Linux. Второе издание

Книга известных профессионалов в области разработки коммерческих приложений в Linux представляет СЃРѕР±РѕР№ отличный справочник для широкого круга программистов в Linux, а также тех разработчиков на языке С, которые перешли в среду Linux из РґСЂСѓРіРёС… операционных систем. РџРѕРґСЂРѕР±но рассматриваются концепции, лежащие в основе процесса создания системных приложений, а также разнообразные доступные инструменты и библиотеки. Среди рассматриваемых в книге вопросов можно выделить анализ особенностей применения лицензий GNU, использование СЃРІРѕР±одно распространяемых компиляторов и библиотек, системное программирование для Linux, а также написание и отладка собственных переносимых библиотек. Р

Майкл К. Джонсон , Эрик В. Троан

Программирование, программы, базы данных
3ds Max 2008
3ds Max 2008

Одни уверены, что нет лучшего способа обучения 3ds Мах, чем прочитать хорошую книгу. Другие склоняются к тому, что эффективнее учиться у преподавателя, который показывает, что и как нужно делать. Данное издание объединяет оба подхода. Его цель – сделать освоение 3ds Мах 2008 максимально быстрым и результативным. Часто после изучения книги у читателя возникают вопросы, почему не получился тот или иной пример. Видеокурс – это гарантия, что такие вопросы не возникнут: ведь автор не только рассказывает, но и показывает, как нужно работать в 3ds Мах.В отличие от большинства интерактивных курсов, где работа в 3ds Мах иллюстрируется на кубиках-шариках, данный видеокурс полностью практический. Все приемы работы с инструментами 3ds Мах 2008 показаны на конкретных примерах, благодаря чему после просмотра курса читатель сможет самостоятельно выполнять даже сложные проекты.

Владимир Антонович Верстак , Владимир Верстак

Программирование, программы, базы данных / Программное обеспечение / Книги по IT
Access 2002: Самоучитель
Access 2002: Самоучитель

В книге рассматривается широкий круг вопросов, связанных с использованием программной среды Access 2002, которая является составной частью пакета Office 2002 и предназначена для создания банка данных в самых различных предметных областях.Подробно описывается методика проектирования объектов базы данных (таблицы, формы, отчеты, страницы доступа к данным, запросы, модули).Детально обсуждаются вопросы создания интегрированной базы данных в единой среде Access 2002: формирование БД с нуля, конвертирование в программную среду баз данных, созданных в ином программном окружении – Clarion, FoxPro.Особое внимание уделяется формированию разнообразных запросов к интегрированной базе данных Access 2002 с использованием языков программирования SQL, VBA и макросов.Приводятся общие сведения о возможностях языка обмена данными между различными компьютерами и приложениями (XML). Описываются возможности использования гиперссылок, связывающих базу данных с другими программными продуктами. Объясняется, как можно работать с базой данных Access 2002 без установки ее на компьютер, используя технологию ODBC (Open Data Base Connectivity). В приложениях приводятся количественные параметры Access 2002 и связанная с этой СУБД терминология.Предлагаемая книга будет полезна специалистам, занимающимся практической разработкой банков данных и приложений на их основе, а также студентам вузов, изучающим информатику.

Павел Юрьевич Дубнов

Программирование, программы, базы данных / ОС и Сети / Книги по IT