Читаем Наука Плоского Мира полностью

2. Пусть теперь гравитация разгуляется. Водород и гелий объединяются вместе и образуют звезды — те самые «топки», которые видели волшебники. В центре звезды давление достигает колоссальной величины, поэтому становятся возможными новые ядерные реакции — начинается ядерный синтез, при котором атомы сдавливаются с такой силой, что сливаются в новый атом большего размера. Таким путем сформировались многие известные нам элементы, от углерода, азота, кислорода до менее известного лития и бериллия и так далее до железа. Многие из этих элементов встречаются в составе живых существ, и наиболее важным в этом смысле является углерод. Благодаря своей уникальной электронной структуре, углерод — это единственный элемент, способный соединяться сам с собой и образовывать гигантские и сложные молекулы, без которых жизнь в известной нам форме была бы невозможна[26]. Как бы то ни было, смысл в том, что большая часть атомов внутри нас возникла внутри звезды. Как спела Джони Митчелл в Вудстоке[27]: «Мы звездная пыль». Ученым нравится цитировать эти слова, потому что это напоминает им о тех днях, когда они были молодыми.

3. Дождитесь, пока некоторые из звезд взорвутся. Взрыв может быть как сравнительно небольшим, или взрывом новой (звезды), так и довольно мощным — в этом случае звезда называется сверхновой. «Новизна» здесь состоит в том, что мы обычно не видим звезду до взрыва, а потом она неожиданно появляется. Происходит это не только из-за исчерпания ядерного топлива: водород и гелий, поддерживающие существование звезды, сливаются в более тяжелые элементы. Те, в свою очередь, становятся примесями, которые нарушают течение ядерной реакции. Даже для звезды мусор может стать серьезной проблемой. Физика этих первых солнц претерпевает изменения, а самые большие могут взорваться. При таком взрыве образуются тяжелые элементы вроде йода, тория, свинца, урана и радия. Такие звезды астрофизики относят к звездному населению II-го типа — это старые звезды, которые содержат небольшую долю тяжелых элементов.

4. Есть два вида сверхновых: второй тип как раз в избытке создает тяжелые элементы и приводит к возникновению звезд, которые относятся к населению I-го типа. Эти звезды намного моложе населения II-го типа[28]. Поскольку многие из образовавшихся элементов неустойчивы, их радиоактивный распад приводит к образованию множества других элементов. К таким «вторичным» элементам относится, к примеру, свинец.

5. Наконец, некоторые элементы были созданы людьми в ходе контролируемых процессов в атомных реакторах — самым известным примером является плутоний, побочный продукт обычных урановых реакторов и сырье для изготовления ядерного оружия. Более необычные элементы с очень маленькими временем жизни были получены в результате столкновения атомов в специальных установках. Пока что мы добрались до 114-го элемента, но еще не смогли получить 113-ый. Возможно, уже удалось получить 116-ый элемент, однако заявление о синтезе 118-го элемента Национальной Лабораторией им. Лоуренса в Беркли в 1999 году было отозвано. Физики вечно сражаются за пальму первенства и, как следствие, право предложить название, так что самым тяжелым элементам все время присваивают временные (и смехотворные) названия вроде «унуннилий»[29] для 110-го элемента, что на ломаной латыни означает «один-один-нол-ий».

В чем смысл создания элементов с таким маленьким временем жизни? Никакого практического применения у них нет. В каком-то смысле они похожи на горы: достаточно просто того, что они есть. Кроме того, всегда полезно проверить, работает ли теория в экстремальных условиях. Но самое лучшее объяснение состоит в том, что подобные открытия могут стать шагами на пути к чему-то более интересному — при условии, конечно, что оно существует. Общее правило таково: после полония с номером 84 все элементы радиоактивны — они испускают частицы сами по себе и распадаются во что-нибудь другое, и чем выше атомный номер, тем быстрее идет распад. Однако в какой-то момент это правило может нарушиться. Мы не умеем строить точные модели для тяжелых атомов, как, впрочем, и для легких, однако чем тяжелее атом, тем меньше наши модели соответствуют действительности.

Различные эмпирические модели (хитроумные приближения, основанные на интуиции, догадках и подборе регулируемых констант) позволили вывести удивительно точную формулу, которая показывает стабильность элемента с заданным числом протонов и нейтронов. Для определенных «магических чисел» — термин Круглого Мира, показывающий, что придумавшие его ученые вобрали в себя атмосферу Плоского Мира и осознали, что их формула больше похожа на заклинание, чем на теорию — соответствующие атомы проявляют необычайно высокую стабильность. Магические числа для протонов: 28, 50, 82, 114 и 164, а для нейтронов: 28, 50, 82, 126, 184, 196 и 318. Например, самый стабильный элемент — это свинец, его атом содержит 82 протона и 126 нейтронов.

Перейти на страницу:

Похожие книги