Как только «порядок» в этой модели опускается ниже уровня «зерна», он исчезает безвозвратно. Если часть картинки смазалась и превратилась в пиксель, восстановить ее уже нельзя. Но в реальной Вселенной это иногда происходит, потому что движение внутри ячеек никуда не исчезает, просто в модели, состоящей из смазанных усредненных значений, их не видно. Таким образом, модель не соответствует действительности. Более того, эта модель несимметрично трактует прямое и обратное течение времени. Когда время движется вперед, молекула, попавшая в ячейку, остается там навсегда. При движении в обратную сторону все наоборот: молекула может покинуть ячейку, но не может попасть внутрь нее, если только не находилась там с самого начала.
Приведенное объяснение ясно дает понять, что Второй Закон Термодинамики не описывает настоящее свойство Вселенной, а просто является следствием приближенной математической модели. В таком случае полезность этой модели определяется контекстом, в котором мы ее применяем, а вовсе не формулировкой Второго Закона. К тому же приближенная модель разрушает связь с законами Ньютона, которые имеют непосредственное отношение к тонкой структуре.
Итак, как мы уже говорили, Шеннон использовал то же самое название «энтропия» для величины, описывающей статистические закономерности источника информации. А сделал он это, потому что формула энтропии Шеннона выглядит точно так же, как формула энтропии в термодинамике. За исключением знака «минус». То есть, термодинамическая энтропия выглядит как отрицательная энтропия Шеннона и, значит, ее можно трактовать как «утраченную информацию». На эту тему было написано множество статей и книг — к примеру, в них стрела времени объяснялась тем, что Вселенная постепенно теряет информацию. Действительно — заменяя тонкую структуру ячейки ее усредненным значением, мы теряем информацию о ее структуре. А восстановить ее после этого уже нельзя. Что и требовалось доказать — время всегда течет в сторону уменьшения информации.
На самом деле упомянутая связь — это просто выдумка. Да, конечно, формулы выглядят одинаково…, вот только используются они в разных контекстах, совершенно не связанных друг с другом. В знаменитой формуле Эйнштейна, выражающей связь между массой и энергией, символ
Мы уже говорили, что наука — это не неизменная коллекция фактов, и в ней порой возникают разногласия. Одним из них стала та самая связь между термодинамической энтропией и энтропией Шеннона. Вопрос о том, можно ли осмысленно считать термодинамическую энтропию отрицательной информацией, оставался предметом споров в течение многих лет. Эти споры все еще не утихли — например, статьи, написанные компетентными учеными, даже после рецензирования категорически противоречат друг другу.
По-видимому, здесь произошла путаница между формально-математическим выражением «законов» информации и энтропии, физической интуицией, подсказавшей эвристическую интерпретацию этих понятий, и неспособностью осознать важность контекста. Очень много внимания уделяется схожести формул энтропии в теории информации и термодинамике, но контекст, в котором эти формулы используются, теряется из вида. Из-за этой привычки мы стали очень неаккуратно обращаться с некоторыми важными физическими концепциями.
Одно важное различие состоит в том, что термодинамическая энтропия — это величина, характеризующая