В биологическом развитии условиями, наполняющими смыслом сообщение ДНК, являются физические и химические законы. В них-то и заключается эксформация. Однако едва ли ее можно представить в количественном виде. Сложность организма определяется не
Центральное понятие в теории информации Шеннона занимает некая
Сейчас, по прошествии лет, кажется досадным, что он выбрал слово «энтропия», поскольку одноименное понятие устоялось в физике, где под ним обычно понимается «беспорядок». Противоположный ей «порядок», как правило, отождествляется со сложностью. Контекст в данном случае лежит в разделе физики, известном как термодинамика, изучающем отдельно взятую упрощенную модель газа. Молекулы газа в термодинамике представляют собой «твердые сферы», микроскопические бильярдные шары. Они периодически сталкиваются и отскакивают друг от друга, будто обладают идеальной эластичностью. Законы термодинамики указывают на то, что большое скопление таких сфер подчиняется определенным статистическим закономерностям. Первый закон гласит, что общая энергия системы постоянна. Тепловую энергия можно преобразовать в механическую, как, скажем, в паровом двигателе; и, наоборот, механическую можно преобразовать в тепловую. Но сумма их всегда остается неизменной. Второй закон при помощи более точных понятий (которые мы вскоре это поясним) определяет, что тепло не может передаваться от более холодного тела более теплому. В третьем же законе говорится о том, что температура газа не может опускаться ниже температуры «абсолютного нуля», составляющего приблизительно –273 °C.
Самый трудный (и интересный) из этих законов – второй. Он детальнее рассматривает величину, называемую энтропией, под которой обычно подразумевается «беспорядок». К примеру, если газ сконцентрирован в одном углу комнаты, то это будет более упорядоченное (то есть менее беспорядочное) состояние, чем то, при котором он равномерно распространяется по комнате. Следовательно, при равномерном распространении газа его энтропия выше, чем при условии, если он весь скапливается в углу. Одна из формулировок второго закона звучит так: количество энтропии во вселенной постоянно возрастает с течением времени. Иными словами, с течением времени вселенная постоянно становится все менее упорядоченной или столь же менее сложной. Согласно этой интерпретации, чрезвычайно сложный мир живых существ неизбежно будет становиться менее сложным до тех пор, пока вселенная не выйдет из берегов и превратится в густой, еле теплый бульон.
На этом свойстве основано одно из объяснений «стрелы времени». Это любопытное явление выражается в том, что яйцо легко взболтать, но вернуть его после этого в исходное состояние невозможно. Время течет в направлении возрастающей энтропии. То есть в результате взбалтывания яйцо становится более беспорядочным – иными словами, его энтропия возрастает – что согласуется со вторым законом. Возвращение яйца в исходное состояние делает его менее беспорядочным и уменьшает энергию – а это закону противоречит. Заметьте, яйцо – это не газ, но законы термодинамики также могут распространяться на жидкие и твердые тела.
Здесь мы сталкиваемся с одним из величайших парадоксов в физике, ставшим причиной серьезной неразберихи, которая продлилась около века. Еще одна система физических законов, законы механики Ньютона, предписывает, что взбалтывание и обратное взбалтывание яйца являются равновероятными физическими явлениями. Точнее, если