Читаем Наука Плоского мира. Книга 4. День Страшного Суда полностью

Если без шуток, подумайте над тем, как именно мы анализируем звуки. Учёные и инженеры предпочитают для этого разбивать сложный звук на простые составляющие – синусоидальные колебания определённой частоты. Синусоидальная кривая, или так называемая синусоида, математически описывает простейший чистый звук. Этот метод называется Фурье-анализом, по имени Жозефа Фурье, использовавшего его в 1807 году при изучении теплопроводности. Например, звук кларнета имеет три основных компонента Фурье: колебание главной частоты (нота, к которой звук ближе всего), более слабое колебание втрое большей частоты (третья гармоника) и ещё более слабое колебание пятикратно большей частоты (пятая гармоника). Модель продолжает нечётные гармоники до тех пор, пока человеческое ухо не перестаёт их различать.

Звук кларнета можно синтезировать в цифровом виде, путем сложения всех этих компонентов ряда Фурье[43]. Но существуют ли эти компоненты в физическом смысле? Спорный вопрос, несмотря на то, что мы можем разложить звук на эти самые «компоненты» и собрать его заново. С одной стороны, их можно опознать, приложив нужную математику к звучанию кларнета. А с другой – кларнет не издаёт чистых синусоидальных тонов, по крайней мере, без дополнительной возни с заглушением нежелательных колебаний, но в таком случае кларнет перестанет быть кларнетом. Математически звуковые колебания, издаваемые кларнетом, лучше всего описываются с помощью нелинейного уравнения, которое соответствует сложному характеру колебаний, а не только набору отдельных компонентов Фурье. Иначе говоря, кларнет не генерирует отдельных компонентов, которые затем объединяет. Его звук существует как неделимое целое.

Из математических построений вы можете много узнать о звучании кларнета, но это не делает их материальными, хотя математический метод по-своему полезен. Похожий метод используется для сжатия данных в цифровых изображениях, только вместо звуковых волн рассматривается полутоновая шкала. И точно так же реальная картинка не получается путём простого соединения компонентов.

Может быть, физики тоже просто подбирают математические конструкции, которые создают в процессе анализа данных, и уже их интерпретируют в качестве фундаментальных частиц? Реальны ли все эти фантасмагорические высокоэнергетические частицы или они – артефакты сложных возбуждений неясной природы? И даже если они существуют в действительности, какой научный и философский смысл это имеет? Сейчас мы с вами затрагиваем вопросы о природе самой реальности, главным из которых является проблема существования реальности как таковой. Мы отнюдь не уверены в ответе, посему приходится довольствоваться лишь постановкой вопроса. К тому же есть подозрение, что некоторые различные интерпретации одного и того же явления могут быть одинаково справедливыми[44], и выбор варианта зависит от того, для чего именно он вам нужен.

По существу, бозон Хиггса – это крошечный бугорок на кривой, которая в противном случае осталась бы совершенно гладкой. Учитывая склад мышления физиков, занимающихся частицами, их настрой и традиции, он, естественно, был интерпретирован ими как частица. Нам прежде всего интересно, почему этот «бугорок» стал объектом такого пристального внимания, в то время как гораздо большее количество данных всей остальной кривой отошло на задний план.

Возьмём другой известный пример, имеющий те же особенности. Наше видение Солнечной системы со всеми её планетами, астероидами и кометами, ведущими себя привычным нам образом, перевернулось бы, если бы мы приняли какой-нибудь космический корабль за естественное небесное тело. Ведь этот паршивец злостно нарушил бы закон всемирной гравитации. Но если закон определяет естественный порядок вещей, значит, космический корабль – аномалия.

Вспомните о суете, поднявшейся вокруг неправильного поведения «Пионера-10» и «Пионера-11», начавших необъяснимым образом тормозить? Это были первые космические зонды, отправленные к внешним планетам Солнечной системы, таким как Юпитер и Нептун. Из-за гравитационного притяжения Солнца их скорость постепенно замедлялась, однако она была достаточно высока и позволяла его преодолеть, позволив аппаратам покинуть со временем пределы Солнечной системы. Когда аппараты находились на том же расстоянии от Солнца, как и Уран, наблюдатели заметили, что скорость теряется несколько быстрее, чем объяснялось гравитацией: примерно на одну миллиардную долю метра в секунду за секунду. После долгих чесаний затылков в 2011 году был опубликован отчёт, объяснивший, что причина могла крыться в особенностях теплового излучения аппарата, создававшего небольшое давление.

Здесь декорацией служит один из основных физических законов, а именно закон гравитации, на фоне которого разворачивается история полёта космического корабля. Pan narrans считает, что космический корабль и есть самое интересное, поскольку не вписывается в существующий закон.

Перейти на страницу:

Все книги серии Наука Плоского Мира

Похожие книги