Следующим картографом, напечатавшим карту на основе проекции Меркатора, был голландец Йодокус Хондиус (1563–1611), которых использовал работы английских математиков, будучи в Лондоне в статусе беженца в 1584–1595 годах. Английские математики лучше справились с проблемой, чем Меркатор. Их вдохновителем был Джон Ди, который в 1547 году специально ездил в Бенилюкс, чтобы поговорить с умными людьми, в первую очередь с математиками. Среди последних были Фризиус Гемма и Меркатор. Ди даже привез в Англию несколько глобусов Меркатора. Годом позже Ди снова вернулся на континент, сначала ненадолго, когда был студентом в Лёвене, потом учителем математики в Париже. Здесь он познакомился с Фине, Фернелем и многими другими выдающимися умами современности, приобрел репутацию способного математика и установил переписку с Нуньесом. Таким образом, Ди был в курсе, как обстоят дела в навигации и картографии. Двое его коллег Томас Гариот (1560–1621) и Эдвард Райт утверждали, что добились успеха с локсодромическими картами. Гариот кратко обсудил проблему в пятой части «Трактата о сферах» Хьюза (1594), однако он не указал ни точной информации, ни метода. Первое настоящее обсуждение имело место в трактате Эдварда Райта «Некоторые ошибки в судовождении, проистекающие из ошибок морских карт, приборов и таблиц» (Certaine Errors in Navigation, Arising either of the ordinarie erroneous making of the Sea Chart, Compasse, Cross staff and Tables of declination of the Sunne and fixed
Starres detected and corrected, 1599). Райт не спешил публиковать свой труд; вероятно, он был согласен с Ди в том, что математические знания были эзотерическими и должны были оставаться тайными, хотя он и не разделял увлеченности Ди магическими науками. Труд Райта довольно долго оставался в рукописи, но в конце концов был напечатан. Причем автор заявил, что решился на публикацию только с тем, чтобы помешать его пиратскому изданию под другим именем. Ему действительно было известно, что Хондиус воспользовался его работой, не указав автора, хотя он показал голландцу свои таблицы, взяв с него обещание хранить их в тайне[129]
. Если уж его работе предстояло стать всеобщим достоянием, это следовало сделать по всем правилам.Райт намеревался проанализировать типичные ошибки, как правило связанные с обычными методами счисления. В первую очередь он разобрал ошибки, связанные с использованием плоских карт, определил их геометрические и физические источники и способы их избежать. Райт составил таблицы румбов и показал, как применять таблицы и новые карты, основанные на них, как найти расстояния от одной точки до другой с помощью карт и как лучше всего прокладывать курс. В общем, это было все, что необходимо знать практику, и нудные расчеты были сведены к минимуму. Неудивительно, что Хондиус – не математик и даже не опытный картограф – сумел составить свою карту.
Описание Райтом геометрической проблемы, связанной с новой проекцией, показывает ясность мышления и стиля. Он писал:
«Представьте сферическую поверхность с нанесенными на нее меридианами, параллелями и всей гидрографической информацией, вписанную в вогнутый цилиндр так, чтобы их оси совпали.
Пусть эта сферическая поверхность равномерно раздувается, как пузырь, пока не соединится с вогнутыми поверхностями цилиндра. Каждая параллель на этой сферической поверхности будет успешно расширяться от экватора к каждому полюсу, пока не станет одинакового диаметра с цилиндром, а меридианы будут расти, пока не окажутся на таком же расстоянии друг от друга, как на экваторе. Таким образом, проще всего понять, как сферическую поверхность можно преобразовать (расширением) в цилиндрическую, а потом и в поверхность параллелограмма»[130]
.Конечно, этого было недостаточно для полного понимания того, что проблема упрощается, если цилиндр (который можно развернуть, образовав плоскую поверхность) использовать вместо сферы, однако это было больше, чем предполагали и Нуньес, и Меркатор. Было необходимо разработать новые таблицы, чтобы создавать карты на основе этой проекции. Райт это сделал. После публикации его труда любой картограф мог составить карту на основе уже ставшей знакомой проекции Меркатора, отлично приспособленной к морским картам – ведь теперь линия румба стала прямой, и постоянный курс по компасу можно было проложить, пользуясь линейкой. То, что курс по дуге большого круга не так прост, очевидно, все еще не заботило моряков, не заинтересованных в нахождении кратчайшего расстояния между двумя точками, поскольку ветры и течения все равно не позволят им пройти точно этим курсом.