Начнем с морских губок, они “помогут” очертить границы эволюции нервной системы. Губки – самые примитивные многоклеточные организмы, у них нет так называемого плана тела, нет конечностей, нет мышц, – и нервы им не нужны. Они закрепились на дне океана и фильтруют питательные вещества подобно ситу. Но у нас есть общие с губками гены, в том числе не менее 25 из тех, которые у людей помогают структурировать нервную систему[12]. У губок те же самые гены могут выполнять более простые функции, например участвовать в коммуникации клеток друг с другом. Губки как будто балансируют на эволюционной грани нервной системы.
Считается, что последний общий у нас с ними предок существовал в диапазоне от 700 до 600 млн лет назад (см. шкалу времени на рис. 2.1)[13].
Другие древние животные – медузы – напротив, обладают нервной системой. Медузы плохо сохраняются в окаменелостях, но, анализируя их генетические взаимосвязи с другими животными, биологи предполагают, что они могли отделиться от остального животного царства примерно 650 млн лет назад[14]. Эти цифры, возможно, изменятся с получением новых данных, но в качестве правдоподобного предположения скажем, что нейроны – базовые клеточные компоненты нервной системы – впервые появились в животном царстве между губками и медузами.
Нейрон по сути своей – это клетка, передающая сигнал. Волна электрохимической энергии прокатывается по мембране клетки от одного края нейрона до другого со скоростью чуть более 60 м/с и действует на другой нейрон, мышцу или железу. Самые первые нервные системы могли быть устроены как простые сети нейронов, пронизывающие тело и соединяющие мышцы. По этому принципу нервных сетей существуют гидры[15]. Это небольшие водные создания, прозрачные, похожие на цветы, в роли тела у них выступает мешок со множеством щупалец; они принадлежат к той же древней категории, что и медузы. Если коснуться гидры в одном месте, нервная сеть распространит сигнал повсюду и вся гидра дернется.
Нервная сеть не обрабатывает информацию – не извлекает из нее какого-то значения. Она просто передает сигналы по телу, соединяет сенсорный стимул (прикосновение) с мышечной реакцией (подергивание). Но после возникновения нервной сети нервные системы довольно быстро перешли на новый уровень сложности: речь идет о способности усиливать некоторые сигналы относительно других. Форсирование сигнала – простой, но мощный прием, один из основных способов, посредством которых нейроны манипулируют информацией. Это базовый компонент практически всех известных нам вычислений, происходящих в мозге.
Один из наиболее изученных примеров – глаз краба[16]. У этого животного сложные глаза со множеством детекторов, в каждом из которых есть нейрон. Когда свет падает на детектор, он активирует находящийся внутри нейрон. Пока все идет как надо. Но добавим щепотку сложности: каждый нейрон связан с ближайшими соседями и по этим связям они соревнуются друг с другом. Когда активируется нейрон в одном детекторе, он пытается приглушить активность нейронов в соседних, подобно человеку в толпе, который старается кричать громче всех и заглушить тех, кто рядом с ним.
В результате получается, что, если на глаз краба направлено размытое пятно света и на один из детекторов попадает самая яркая его часть, нейрон в этом детекторе развивает высокую активность, побеждает в соревновании и отключает соседей. Паттерн активности набора детекторов сигнализирует не только о пятне света, но и о том, что вокруг пятна – кольцо темноты. Таким образом, сигнал усилен. Глаз краба берет размытую реальность из оттенков серого и повышает ее резкость, получая контрастную картинку, где тени темнее, а яркое ярче. Усиление сигнала – прямое следствие того, что нейроны подавляют своих соседей: этот процесс называется
Описанный механизм в глазу краба, пожалуй, один из самых простых и базовых примеров, модельный экземпляр внимания. Сигналы соревнуются друг с другом, победители усиливаются за счет проигравших, и победившие сигналы затем влияют на движения животного.