Читаем Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит? полностью

которые отличаются между собой только знаком. Если мы поменяем местами индексы 1 и 2 или состояния a и b, то в первом случае получим ту же линейную комбинацию, во втором – ту же линейную комбинацию, но с противоположным знаком. Эти комбинации называются симметричной и антисимметричной к смене индексов частиц и состояний соответственно. Какое из этих двух выражений удовлетворяет принципу Паули? Если мы рассмотрим два электрона в одинаковом состоянии, то результат антисимметричной комбинации будет равен нулю. По всей видимости, именно в ней учитывается принцип Паули. Этот простой пример иллюстрирует более общий результат для системы из множества электронов: волновая функция этой системы должна быть антисимметричной, то есть менять знак при смене индексов любых двух электронов.

Вернемся к атому гелия и уточним описанные выше обозначения. Волновая функция каждого электрона представляет собой произведение пространственной части, в которой для обозначения трех квантовых чисел используются буквы n и m, и спиновой части. Для обозначения пространственной части волновой функции используем греческую букву φ(фи) и будем записывать φn(1) и φm(2). В спиновой части два возможных состояния спина обычно обозначаются греческими буквами альфа и бета, поэтому будем записывать α(1) и β(2).

Волновая функция для двух электронов будет записываться так:

φm(1)φn(2)α(1)β(2) – φm(2)φn(1)α(2)β(1).

Это в самом деле антисимметричная комбинация: при смене индексов электронов мы получим тот же результат, но с противоположным знаком. Кроме того, если обозначения состояний равны, итоговый результат равен нулю. Таким образом, принцип Паули выполняется.

Данному принципу удовлетворяет и следующая линейная комбинация:

m(1)φn(2) + φm(2)φn(1)] • [α(1)β(2) – α(2)β(1)].

Это произведение симметричной комбинации пространственных частей и антисимметричной комбинации спиновых частей. Аналогично определяется следующая комбинация:

m(1)φn(2) – φm(2)φn(1)] • [α(1)β(2) + α(2)β(1)].

Она обладает обратными свойствами симметрии и определяется как произведение антисимметричной комбинации пространственных частей на симметричную комбинацию спиновых частей. Можно убедиться, что суммы этих двух новых линейных комбинаций за исключением общего множителя равны первой волновой функции, записанной нами для двух электронов. Однако новый способ записи содержит больше физической информации. Гейзенберг показал, что эти новые выражения описывают два разных множества состояний атома гелия, а именно линии спектра парагелия и ортогелия. В первом случае спиновая часть антисимметрична и соответствует синглетному состоянию – единственному состоянию общего спина. В примере с ортогелием спиновая часть симметрична, что соответствует триплетному состоянию, то есть трем возможным состояниям с одним и тем же значением общего спина. Следовательно, загадка двух видов гелия объясняется, если мы рассмотрим спин электрона: два вида гелия соответствуют двум возможным сочетаниям этих спинов.

Гейзенберг применил эти же идеи при изучении молекулы водорода, содержащей два протона и два электрона, и предсказал существование двух форм водорода, которые также назвал параводородом и ортоводородом. Они были открыты в 1929 году. Это два состояния молекулы с различным общим спином, которые сосуществуют при определенной температуре окружающей среды. Соотношение параводорода и ортоводорода равно 1:3. Как указано в заявлении Нобелевского комитета, Гейзенберг получил Нобелевскую премию по физике «за создание квантовой механики, применение которой привело, в частности, к открытию аллотропных форм водорода».


Квантовая неопределенность


В мае 1926 года Гейзенберг вернулся в Копенгаген – ему предстояло провести целый год в роли помощника Нильса Бора. К этому времени он уже достаточно хорошо говорил по-датски, чтобы преподавать. Бор был рад его возвращению и в письме к Резерфорду сообщал: «Приехал Гейзенберг, и все мы очень заняты обсуждением нового пути развития квантовой механики и перспектив, которые она открывает перед нами».

Как-то раз немецкий посол в Копенгагене пригласил Гейзенберга в свою резиденцию на музыкальный вечер – один из его сыновей, Карл Фридрих фон Вайцзеккер, интересовался физикой и захотел увидеть талантливого ученого. Гейзенберг постоянно общался с юными скаутами, поэтому легко завязал дружеские отношения с сыном посла, хотя тот был на 10 лет младше и учился в средней школе. Много лет спустя Вайцзеккер защитил докторскую диссертацию под руководством Гейзенберга и стал одним из его немногих близких друзей.

Перейти на страницу:

Похожие книги

100 знаменитых тиранов
100 знаменитых тиранов

Слово «тиран» возникло на заре истории и, как считают ученые, имеет лидийское или фригийское происхождение. В переводе оно означает «повелитель». По прошествии веков это понятие приобрело очень широкое звучание и в наши дни чаще всего используется в переносном значении и подразумевает правление, основанное на деспотизме, а тиранами именуют правителей, власть которых основана на произволе и насилии, а также жестоких, властных людей, мучителей.Среди героев этой книги много государственных и политических деятелей. О них рассказывается в разделах «Тираны-реформаторы» и «Тираны «просвещенные» и «великодушные»». Учитывая, что многие служители религии оказывали огромное влияние на мировую политику и политику отдельных государств, им посвящен самостоятельный раздел «Узурпаторы Божественного замысла». И, наконец, раздел «Провинциальные тираны» повествует об исторических личностях, масштабы деятельности которых были ограничены небольшими территориями, но которые погубили множество людей в силу неограниченности своей тиранической власти.

Валентина Валентиновна Мирошникова , Илья Яковлевич Вагман , Наталья Владимировна Вукина

Биографии и Мемуары / Документальное
10 мифов о Гитлере
10 мифов о Гитлере

Текла ли в жилах Гитлера еврейская кровь? Обладал ли он магической силой? Имел ли психические и сексуальные отклонения? Правы ли военачальники Третьего Рейха, утверждавшие, что фюрер помешал им выиграть войну? Удалось ли ему после поражения бежать в Южную Америку или Антарктиду?..Нас потчуют мифами о Гитлере вот уже две трети века. До сих пор его представляют «бездарным мазилой» и тупым ефрейтором, волей случая дорвавшимся до власти, бесноватым ничтожеством с психологией мелкого лавочника, по любому поводу впадающим в истерику и брызжущим ядовитой слюной… На страницах этой книги предстает совсем другой Гитлер — талантливый художник, незаурядный политик, выдающийся стратег — порой на грани гениальности. Это — первая серьезная попытка взглянуть на фюрера непредвзято и беспристрастно, без идеологических шор и дежурных проклятий. Потому что ВРАГА НАДО ЗНАТЬ! Потому что видеть его сильные стороны — не значит его оправдывать! Потому что, принижая Гитлера, мы принижаем и подвиг наших дедов, победивших самого одаренного и страшного противника от начала времен!

Александр Клинге

Биографии и Мемуары / Документальное