Читаем Наука высокого напряжения. Фарадей. Электромагнитная индукция полностью

В трех представленных случаях проволока замыкается на гальванометр: a) если мы приближаем магнит к кабелю и удаляем от него, в кабеле появляется ток; b) если к кабелю подключается или отключается ток, он индуцируется на соседний кабель; с) если магнит вращать вокруг кабеля, в нем появляется ток.


ОБОБЩЕНИЕ ЭКСПЕРИМЕНТОВ ПО ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ


Обобщая, мы можем разделить эксперименты, которые привели Фарадея к открытию электромагнитной индукции, на две категории: с токами и с магнитами.

Для опытов первой категории Фарадей подготовил два соленоида (цилиндрические обмотки из провода), расположенные друг напротив друга и изолированные между собой. Один из них он соединил с батарейкой, другой — с гальванометром. После переключения выключателя в первом контуре можно было наблюдать перемещение стрелки гальванометра во втором, при этом через несколько мгновений стрелка возвращалась обратно на ноль. Гальванометр обнаруживал ток, со временем исчезающий, только при переключении выключателя (рисунок 1).


Два вида экспериментов, которые привели Фарадея к открытию электромагнитной индукции: с электрическими токами (рисунок 1) и с магнитами (рисунок 2).


* * *


Закон Фарадея

Одна из формулировок закона Фарадея звучит так: «Для любого замкнутого контура индуцированная электродвижущая сила равна скорости изменения магнитного потока, проходящего через этот контур, взятого со знаком минус:


ε = -dΦ/dt

где ε — индуцированная ЭДС, Φ — магнитный поток, t — время, d/dt — производная по отношению к времени». Знак «-»был добавлен Генрихом Ленцем, так как направления ЭДС и тока стремятся к противоположности по отношению к получаемому изменению. Из-за этого в некоторых текстах закон Фарадея носит более сложное название — закон Ленца — Фарадея или даже Ленца — Фарадея — Генри.


* * * 

Для второй категории опытов Фарадей использовал магнит и катушку, соединенную с гальванометром. Он быстро помещал магнит в катушку и мог наблюдать отклонение стрелки; если магнит внутри катушки не двигался, стрелка возвращалась в начальное положение. При вынимании магнита стрелка снова двигалась, только в обратном направлении. При повторении процесса стрелка колебалась в одну и другую сторону, при этом ее перемещения были тем значительнее, чем более быстрым было движение, вводящее и вынимающее магнит из катушки (рисунок 2). Tе же результаты наблюдались, когда магнит был неподвижным в катушке, а сама катушка двигалась.

Без сомнений, концепция поля облегчила Фарадею дальнейшие открытия. Она объясняет взаимодействие двух тел, не находящихся в физическом контакте: поле — участок пространства, к которому относятся величины, зависящие от напряжения тела, вступившего во взаимодействие. Таким образом, могут существовать, например, электрические поля (со статическими зарядами) и магнитные поля (с естественными магнитами или движущимися зарядами).

Электрическое поле определяется как участок пространства, которое может быть обнаружено благодаря его силовому воздействию на заряженные тела. Силовое воздействие происходит вследствие наличия в поле как минимум одного другого заряженного тела. Величина, используемая для характеристики напряженности этого поля, — интенсивность электрического поля. Присутствие электрического поля в том или ином месте можно обозначать с помощью силовых линий, или линий поля (рисунок 3). Эти линии имеют определенные свойства: если они расположены близко друг к другу, это говорит об интенсивности поля, и наоборот; линии изображаются исходящими от положительных зарядов и входящими в отрицательные. Количество линий, изображенных исходящими от положительного заряда и входящими в отрицательный, пропорционально абсолютной величине заряда; две линии не могут сходиться в точке, где нет заряда; кроме того, линии не могут быть замкнутыми.

На первый взгляд не существует связи между магнитными и электрическими полями, за исключением того, что одинаковые заряды отталкиваются, а разные — притягиваются (в электрических полях), и одинаковые поля отталкиваются, а разные — притягиваются (в магнитных полях). В магнитных полях механизм притяжения и отталкивания аналогичен механизму в электрических полях. Однако создание батарейки показало, что возможно с помощью проводника соединить два противоположных электрических поля. В этом случае вокруг проводника можно наблюдать магнитное поле.


* * *


Магнитное поле

Перейти на страницу:

Похожие книги

Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика