Читаем (Не)совершенная случайность. Как случай управляет нашей жизнью полностью

Как правило, при проведении опросов предел погрешности выше 5% считается недопустимым, однако в повседневной жизни мы основываем свои суждения на значительно меньшем количестве наблюдений. Разве найдешь человека, который 100 лет играет в профессиональный баскетбол, вложил деньги в 100 многоквартирных жилых домов или основал 100 компаний, выпускающих шоколадное печенье? Так что, когда мы делаем выводы об успешности этих людей, мы берем за основу лишь незначительное число наблюдений. Следует ли футбольной команде раскошелиться на 50 млн долларов, чтобы заполучить игрока, чья игра была поистине чемпионской лишь в течение года? С какой вероятностью биржевой маклер, который в очередной раз просит у вас денег и говорит, что дело верное, вновь добьется успеха? Означает ли успех процветающего изобретателя такой игрушки, как морские обезьяны, что его новые изобретения — невидимые золотые рыбки и растворимые лягушки — скорее всего, станут пользоваться таким же спросом? (Кстати сказать, не стали{148}.) Сталкиваясь с успехом или с неудачей, мы имеем дело лишь с одним наблюдением, с одной из множества точек колоколообразной кривой, отображающей все наблюдавшиеся ранее возможности. И мы не знаем, что представляет собой это наблюдение — среднее или явный выброс, событие, в котором можно быть абсолютно уверенным, или редкий случай, который едва ли повторится. Так или иначе, мы должны иметь в виду, что точечное наблюдение — это не более чем точечное наблюдение, и прежде чем принимать его как факт, следует рассмотреть его в контексте соответствующего ему стандартного отклонения или разброса значений. Даже если некоторое вино получило оценку в 91 балл, эта оценка не имеет смысла, пока мы не узнаем, каков был бы разброс, если бы то же самое вино подверглось повторному оцениванию или если бы его стали оценивать другие люди. В качестве примера полезно вспомнить, как несколько лет назад «Путеводитель по хорошим австралийским винам» издательства «Penguin» и «Ежегодник австралийских вин», выпускаемый «On Wine», написали о рислинге «Митчелтон Блэквуд Парк» урожая 1999 г., причем «Путеводитель...» присвоил вину пять звездочек из пяти и назвал лучшим вином года по версии «Penguin», а «Ежегодник...» оценил ниже всех прочих вин, о которых писал в тот год, и счел худшим вином данной марки за последнее десятилетие{149}. Нормальное распределение не только помогает понять подобные разногласия, но и применяется в великом множестве областей науки и торговли: например, когда фармацевтическая компания решает, считать ли результаты клинических испытаний значимыми, производитель — отражает ли случайная выборка реальный процент деталей с браком, а закупщик — принять ли к действию результаты опроса.

Тот факт, что нормальное распределение описывает распределение ошибки измерения, открыл десятилетия спустя после выхода работы де Муавра человек, имя которого носит колоколообразная кривая, — немецкий математик Карл Фридрих Гаусс. Эта мысль — во всяком случае, в отношении астрономических измерений, — пришла Гауссу в голову, когда он работал над проблемой траекторий движения планет. Однако же «доказательство» Гаусса было, по его собственному позднейшему признанию, ошибочным{150}, а далеко идущие последствия этого открытия тоже не пришли ему на ум. Поэтому он, дабы не привлекать излишнего внимания, сунул обнаруженный закон в один из последних параграфов своей книги «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Там бы она и сгинула, эта еще одна из многочисленных отвергнутых наукой идей о том, как должен выглядеть закон распределения ошибок.

Перейти на страницу:

Похожие книги