Вернувшись в Брюссель, Кетле принялся собирать и анализировать демографические данные и вскоре остановился на отчетности по преступности, которую французское правительство начало публиковать в 1827 г. В двухтомном труде «О человеке и развитии его способностей, или Опыт социальной физики», вышедшем в 1835 г., Кетле напечатал погодовую сводку убийств, совершенных во Франции в период с 1826 по 1831 гг. Он заметил: число убийств из года в год почти не менялось, как и соотношение убийств, совершаемых разными способами: с помощью пистолетов, мечей, ножей, тростей, камней, режущих и колющих инструментов, пинков и ударов, удушения, утопления и поджога{165}. Кроме того, Кетле проанализировал смертность с точки зрения возраста, географического местоположения, времени года, рода деятельности, а также изучил случаи смертей в госпиталях и тюрьмах. Он просмотрел статистические данные по утонувшим, сошедшим с ума и умершим насильственной смертью. И обнаружил статистические закономерности, просматривая случаи самоубийств путем повешения в Париже и количество браков в Бельгии между женщинами за шестьдесят и мужчинами за двадцать.
Подобные исследования проводились и до Кетле, однако Кетле сделал с цифрами нечто большее, чем просто изучил средние значения, — он внимательно присмотрелся к тому, каким образом данные отклоняются от среднего значения. И всюду находил нормальное распределение: в предрасположенности к преступлению, браку и самоубийству, в высоте роста американских индейцев, в размерах грудной клетки шотландских солдат (на данные обмеров 5 738 солдат он наткнулся в старом номере «Эдинбургского журнала по медицине и хирургии»). Что касалось данных по росту 100 тыс. молодых французов призывного возраста, то в отклонениях от нормального распределения он также обнаружил определенные закономерности. Если изобразить данные по числу призывников и данные по их росту в виде графика, то колоколообразная кривая получится искаженной: слишком мало новобранцев, чей рост превышал 158 см, зато тех, чей рост оказался чуть меньше, в качестве компенсации наблюдалось в избытке. Кетле счел, что разница — около 2 200 лишних «коротышек» — получилась в результате мошенничества или, мягко говоря, те, чей рост оказался ниже 158 см, были освобождены от службы.
Десятилетия спустя великий французский математик Пуанкаре воспользовался методом Кетле, чтобы поймать нечистого на руку булочника, который обвешивал покупателей. Пуанкаре, каждый день покупавший буханку свежего хлеба, решил взвесить буханки и заметил: в среднем они весят 950 г, а не обозначенный в прейскуранте 1 кг. Стоило Пуанкаре пожаловаться властям, как ему стали продавать буханки большего веса. Но Пуанкаре все равно не отпускало ощущение, будто хлеб его «не кошерный». И вот он с терпением, какое присуще только ученым великим или же с приличным стажем, принялся взвешивать буханки: каждый день в течение года. Да, теперь по весу буханки в среднем приблизились к 1 кг; однако если булочник в самом деле давал Пуанкаре первую попавшуюся буханку, число буханок большего веса и меньшего веса, которые должны быть у булочника — об этом я говорил в главе 7 — должно сократиться в соответствии с колоколообразной кривой закона ошибок. Вместо этого Пуанкаре обнаружил слишком мало буханок меньшего веса и избыток буханок большего веса. Из чего сделал вывод: булочник продолжал свое дело, просто теперь, стремясь усыпить бдительность Пуанкаре, продавал ему буханки побольше. Полиция вновь навестила булочника-мошенника, который, судя по словам свидетелей, оказался совершенно не готов к такому визиту и, по-видимому, дал слово исправиться{166}.
Кетле наткнулся на полезное открытие: характер распределения случайностей настолько надежен, что в определенных социологических данных его искажение может быть воспринято как свидетельство правонарушения. В наше время подобным образом анализируют данные, слишком обширные для анализа времен Кетле. В последние годы такое «статистическое выслеживание» распространилось, возникло даже новое направление — судебная экономика, — самым известным примером которой является изучение статистической информации с целью выявления компаний, проводящих свои опционные гранты задним числом. Идея проста: компании предоставляют опционные гранты — право покупки акций — позже по цене этих акций на Дату предоставления права — в качестве поощрения менеджеров. Если гранты проводятся задним числом, на дату особенно низкой стоимости акций, менеджеры соответственно получают максимальные доходы. Ловко придумано, однако тайное исполнение этой придумки выливается в нарушение законодательства по ценным бумагам. Кроме того, остаются статистические «отпечатки пальчиков», которые уже привели к раскрытию подобной практики в десятке крупных компаний{167}. В менее известном случае Джастин Вулферс, экономист из бизнес-школы Уортона, обнаружил свидетельства мошенничества в результатах более 70 тыс. баскетбольных игр, сыгранных между колледжами{168}.