Заблуждения «легкой руки» были проиллюстрированы выше примерами из мира спорта и финансов, однако серии побед и другие специфические модели успеха и поражения встречаются во всех сферах. Иногда преобладают удачи, иногда — провалы, но и то, и другое играет важную роль, так как дает нам понять: модели, в том числе и последовательности, которые выглядят закономерными, на самом деле не что иное, как следствие случайности. Поэтому, оценивая других, важно отдавать себе отчет, что, находясь среди большого числа людей, вы едва ли встретите того, кто никогда не переживал продолжительный период удач или поражений.
Никто не поверил в сомнительный успех Леонарда Коппетта, как никто бы не принял всерьез человека, играющего в орлянку, но многие доверились Биллу Миллеру. Хотя тип примененного мною анализа, по видимости, ускользнул от многих экономических обозревателей, для тех, кто изучает Уолл-стрит с научных позиций, он не стал новостью. Например, лауреат Нобелевской премии экономист Мертон Миллер (не родственник Билла) писал: «Если 10 тыс. человек взглянут на акции и попытаются выбрать самые доходные, один из 10 тыс. попадет в цель по чистой случайности, что и происходит в реальности. Это игра наудачу — люди думают, будто они делают нечто целенаправленно, а на самом деле это не так{214}». Все мы должны делать выводы сообразно обстоятельствам, и представление о том, что такое случайность и как она действует, уберегает от наивных выводов.
Выше было показано, как последовательности случайных событий, развивающихся во времени, могут ввести нас в заблуждение. Но закономерности в случайных последовательностях, обнаруженные в пространстве, так же могут сбить с толку. Ученые знают, что самый лучший способ раскрыть значение данных — представить их в виде картинки или графика. При таком способе толкования значимые связи, которые иначе могли бы остаться незамеченными, становятся очевидными. Расплачиваемся мы за это тем, что видим закономерности там, где их на самом деле нет. Так уж устроен наш разум: он принимает данные, заполняет пропуски и ищет закономерности. Например, взгляните на эти серые квадратики.
Эта картинка не вполне похожа на изображение человека, но общие черты угадываются, и, увидев младенца, изображенного на ней, вы, скорее всего, узнали бы его. Если взглянуть на эту страницу с расстояния вытянутой руки и скосить взгляд, недостатки изображения можно и не заметить. Теперь рассмотрим следующую последовательность X и О:
ооооххххооохххооооххоохооохххооххооо
ххххооохоохохооооохоохоооооххоохххох
хохоххххоооххооххохоохххоохоохохоххох
ооохохооооххххоооххоохоххооохоооххох
ооххоооохооххххоооохххооохоооххххххо
охххоохоохооооохххх
Здесь мы видим прямоугольные кластеры, особенно в углах — они выделены жирным шрифтом. Если X и О представляют интересующие нас события, возникает соблазн задать вопрос: не обозначают ли эти кластеры что-нибудь? Но какое бы значение им ни приписали, оно будет неверным, поскольку это та же самая последовательность из 200 X и О, что и выше, только теперь она записана в 5 строк по 40 символов в каждой и несколько элементов выделены жирным.
Эта тема вызвала немалый интерес в конце Второй мировой войны, когда ракеты Фау-2 посыпались на Лондон. Ракеты наводили ужас, их скорость в пять раз превышала скорость звука, так что услышать, как они приближаются, можно было только после попадания. Вскоре в газетах опубликовали карты обстрелов, где, на первый взгляд, просматривались определенные закономерности. Кому-то показалось, будто расположение мест попадания ракет свидетельствует об управляемости траектории их полета, а это, принимая во внимание пройденное ракетой расстояние, предполагало, что немецкие технологии превзошли все возможные ожидания. Гражданское население строило догадки о немецких шпионах, которые якобы жили в не затронутых бомбежкой районах. Командование беспокоилось об ужасных последствиях в случае, если немцы направят ракетные установки на стратегически важные военные объекты.
В 1946 г. математический анализ ракетных обстрелов Лондона был опубликован в «Джорнал оф де Инститьют оф Актуариз[15]». Автор статьи, Р.Д. Кларк, разделил интересующую его территорию на 576 квадратов со стороной в 500 метров. Из них 229 квадратов уцелели при ракетных ударах, несмотря на их небольшой размер, в 8 квадратах было зафиксировано по четыре-пять ударов. Тем не менее анализ Кларка показал, что, как и в случае с данными при подбрасывании монет, общая модель соответствовала принципу случайного распределения{215}.