При описании распределения данных колоколообразная кривая демонстрирует, что в том случае, когда вы делаете много замеров, большинство их результатов будут примыкать к среднему значению, что отображается в виде пика. Симметрично снижаясь по обе стороны от пика, кривая показывает, как убывает число результатов замеров ниже и выше среднего, поначалу довольно резко, а потом не столь круто. Если данные распределены нормально, около 68% (т. е. приблизительно 2
/3) результатов измерений попадают в пределы одного стандартного отклонения, около 95% — в пределы двух стандартных отклонений и 99,7% — в пределы трех стандартных отклонений.Чтобы представить себе эту картину, взгляните на графики ниже. Квадратики соответствуют результатам угадывания 300 студентами исходов десятикратного подбрасывания монеты{144}
. По оси абсцисс отложено количество верных угадываний — от 0 до 10. По оси ординат — количество студентов, продемонстрировавших соответствующее количество верных угадываний. Кривая имеет колоколообразную форму с пиком на уровне 5 верных угадываний: столько раз верно угадали исход подбрасывания 75 студентов. Двух третей максимальной высоты (соответствующее количество студентов — 51) кривая достигает посередине между 3 и 4 верными угадываниями слева и между 6 и 7 верными угадываниями справа. Колоколообразная кривая с таким стандартным отклонением типична для стохастических процессов вроде угадывания исходов подбрасывания монеты.Угадывание исходов подбрасывания монет и подбор акций: сопоставительный анализ.
Кружочками на том же графике отображен еще один набор данных — успешность работы 300 менеджеров паевых инвестиционных фондов. Для этого набора данных по оси абсцисс отложено не количество верных угадываний исходов подбрасывания монеты, а количество лет (из 10), когда показатели успешности работы менеджера были выше группового среднего. Обратите внимание на сходство! Мы еще вернемся к нему в главе 9.
Чтобы понять связь между нормальным распределением и случайной ошибкой, можно рассмотреть процесс проведения выборочного опроса. Вспомним опрос относительно популярности мэра Базеля, который я упоминал в главе 5. В этом городе часть жителей одобряет деятельность мэра, а часть осуждает. Для простоты примем, что тех и других по 50%. Но, как мы видели, результаты опроса не обязательно будут полностью соответствовать этой пропорции 50/50. И в самом деле, если выборочно опросить N горожан, то вероятность, что любое произвольное их число поддержит мэра, пропорциональна числам в строке N треугольника Паскаля. А раз так, то, согласно работам де Муавра, если служба общественного мнения опросит большое число горожан, вероятность всех возможных результатов опроса можно будет описать с помощью кривой нормального распределения. Иными словами, около 95% случаев одобрения попадет в пределы 2 стандартных отклонений от истинного рейтинга мэра, 50%. Для описания этой погрешности службы общественного мнения используют понятие «допустимый предел погрешности». Сообщая средствам массовой информации, что предел погрешности опроса составляет ±5%, они имеют в виду, что если повторить опрос много раз подряд, 19 из 20 раз (т. е. в 95% случаев) результат его будет в пределах 5% от истинного значения измеряемой переменной. (И хотя службы общественного мнения редко на это указывают, в 1 случае из 20 результат опроса будет мало соответствовать действительности.) На практике размеру выборки в 100 человек соответствует такой допустимый предел погрешности, который никуда не годится. А вот для выборки в 1000 человек предел погрешности обычно составляет около 3%, что уже вполне пригодно для большинства целей.