Читаем Небесные магниты. Природа и принципы космического магнетизма полностью

Чисто вычислительные, компьютерные трудности решения подобных задач тоже поражают воображение. Тем не менее специалисты по вычислительной физике год от года отвоевывают все новые плацдармы в этой сложной области. Однако главная трудность такого подхода даже не в этом. Действуя таким прямолинейным, силовым методом, часто можно получить правдоподобный ответ, воспроизвести то, что известно из наблюдений. Гораздо труднее понять, почему получается то, что получается. В целом можно сказать, что на новом уровне сложности воспроизводится проблема, которая во второй половине XIX в. привела к разделению физики на экспериментальную и теоретическую. Только вместо лабораторного эксперимента приходится говорить о численном эксперименте.

Что же могут предложить специалисты по теоретической физике для задач нелинейного динамо? Первая мысль, которая приходит тут в голову: не описывать задачу во всех деталях, а опереться на какое-нибудь балансное соображение. Такие соображения берут за основу простые бытовые идеи. Например, я с удовольствием повторил бы достижения П. М. Третьякова и С. И. Щукина и занялся бы коллекционированием живописи. Возможно, у меня даже хватило бы для такого занятия художественного вкуса – чем я, в конце концов, хуже Сергея Ивановича? Останавливает одно обстоятельство: мои финансовые возможности несравненно меньше возможностей этих великих коллекционеров. Примерно та же логика в рассуждениях физиков-теоретиков, предлагающих механизмы подавления различных неустойчивостей.

Второе соображение, на которое опирается здесь теоретик, моему поколению преподавали в печальной памяти курсе истории КПСС. В нем подробно рассказывалось об одной дискуссии в этой партии: В. И. Ленин якобы объяснял Н. И. Бухарину, что нужно ухватиться за слабое звено в цепи и так решить занимавшую их (не помню точно какую) проблему. Избегая общей оценки этой дискуссии и выяснения того, кто из спорщиков был ближе к истине (допустим, как сказал один из них, оба были хуже), подтверждаю, что совет про слабое звено очень хороший.

В задаче динамо такое слабое звено сразу заметно – это все тот же альфа-эффект. Получается очень привлекательная схема: можно практически все в течении оставить таким же, как в кинематической задаче, а подправить только альфа-эффект. Подобный подход называется схемой подавления альфа-эффекта или спиральности (это очень близкие понятия).

Теперь нужно решить, как именно подавлять эту спиральность. Первое, что здесь приходит в голову, – опереться на закон сохранения энергии. Энергия очень похожа на деньги. Больше магнитной энергии, чем было запасено кинетической, сделать, конечно, нельзя. Поэтому, как только магнитная энергия сравнится с кинетической, рост магнитного поля должен остановиться. Больше взять энергии неоткуда.

Можно предположить, что альфу нужно помножить на некоторую функцию, зависящую от отношения магнитной и кинетической энергий, а все остальное останется как в кинематических моделях. Подобрать удачную функцию – дело сравнительно несложное. С этим справится любой более или менее опытный человек.

Подобная схема пришла в голову физикам уже на самых первых этапах развития теории динамо. Трудно сказать, кто именно является ее автором: физики не очень сильны в истории физики. Я. Б. Зельдович приписывал эту идею Р. З. Сагдееву, другие приписывали ее самому Зельдовичу. Существуют и другие мнения, но, видимо, вопрос о приоритете здесь не так важен.

Важнее другое: у этой схемы просматриваются очевидные слабости. Во-первых, полная кинетическая энергия, скажем, Солнца определяется прежде всего его общим вращением. Эта энергия существенно больше магнитной энергии, которая сравнима только с энергией конвективных движений, да и то с трудом. Большая трудность заключается в том, что энергия – скаляр, а альфа – псевдоскаляр. У них разные законы преобразования при отражении. Не совсем ясно, как нехватка энергии подавляет псевдоскалярную величину. Да и в целом эта схема кажется какой-то уж очень примитивной.

Однако если не думать о всяких высоких материях, то этот сценарий очень неплохо работает. На его основе удается, например, построить модели генерации магнитных полей в спиральных галактиках, которые дают распределения магнитных полей, удивительно похожие на то, что наблюдают специалисты по радиоастрономии.

Немного неожиданно, но физики и астрономы, интересующиеся динамо, не удовлетворились этой простой, но работающей схемой, а заменили ее на другую, гораздо более сложную и богатую. Но это уже другая история.

10. Магнитная спиральность вступает в игру

Мы уже говорили о том, что кроме энергии в уравнениях магнитной гидродинамики есть еще одна сохраняющаяся величина – магнитная спиральность. В принципе, про это знали еще классики науки XIX в., но, казалось, кого она интересует, эта магнитная спиральность? Это что-то такое эфемерное, что об этом и говорить не стоит.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное