Читаем Небесные магниты. Природа и принципы космического магнетизма полностью

Что же прочитали в нашей статье уважаемые сотрудники Каирского зоопарка о том, как наблюдают магнитные поля галактик? Конечно, никто не собирается отказываться от старого доброго эффекта Зеемана, который уже больше ста лет верой и правдой служит астрономам. Проблема только в том, что он хорош для измерения магнитных полей в солнечных пятнах, но плохо работает при измерении магнитных полей галактик – галактики тоже являются магнитами.

Разберемся в том, что может помешать измерению магнитного поля с помощью эффекта Зеемана. Прежде всего, магнитное поле должно быть достаточно большим, чтобы расщепление спектральных линий было заметным. Магнитные поля галактик намного слабее, чем магнитные поля на Солнце. Однако эта трудность – еще полбеды. За долгие годы спектроскописты научились измерять и слабые магнитные поля. Проблема в том, что эффект Зеемана не единственный, который воздействует на спектральные линии.

Есть еще эффект Доплера: свет, приходящий от движущегося тела, мы видим с несколько другой частотой, чем наблюдатель, движущийся вместе с телом. Само по себе это тоже не беда, но разные атомы, излучающие свет в данном кусочке вещества на далеком небесном теле, движутся с самыми различными скоростями, так что спектральная линия не просто смещается, а размывается. Становится трудно заметить расщепление спектральной линии, поскольку каждая из линий, на которые распалась первоначальная линия, размыта эффектом Доплера, причем величина размытия может быть много больше, чем величина расщепления.

Спектроскописты научились справляться с размытием спектральных линий, но у всего есть пределы. Магнитные поля галактик не только гораздо слабее солнечных, но и вещество галактик, находящееся в пространстве между звезд, гораздо более разрежено, чем вещество Солнца, а разброс скоростей электронов и ионов, излучающих свет (радиоволны), может быть гораздо больше, чем диапазон скоростей атомов на Солнце. Не очень хорошо в этой очень разреженной среде обстоит дело и со спектральными линиями – у излучения Солнца их гораздо больше.

Измерить магнитное поле с помощью эффекта Зеемана все же удается в некоторых частях галактик, где плотность межзвездной среды и напряженность магнитного поля побольше, а скорости – поменьше. Это холодные молекулярные облака межзвездного газа. Такие наблюдения очень важны и полезны, но все же это частности.

И тут астрономия получает совершенно неожиданную поддержку от неожиданного союзника – сахарной промышленности.

В этой индустрии важно оперативно измерять содержание сахара в растворе, который образуется при его вываривании, скажем, из сахарной свеклы. Для этого сообразительные специалисты сахарного дела используют возможность сделать свет поляризованным. В луче поляризованного света векторы электрического (и магнитного) поля направлены не как попало, а колеблются в одной плоскости, которая называется плоскостью поляризации. Несомненно, тут придется потрудиться, но это технически разрешимая задача.

Если луч поляризованного света проходит через раствор сахара, то положение плоскости поляризации не остается постоянным. Она поворачивается на некоторый угол, по величине которого можно вычислить концентрацию сахара в растворе и соответственно обнаружить нечистых на руку или просто небрежных рабочих и выяснить, соблюдали ли рабочие рецептуру приготовления. Конечно, цель – бороться за качество продукции.

Это явление называется эффектом Фарадея по имени обнаружившего этот эффект знаменитого английского физика XIX в.

Плоскость поляризации вращается в сахаре потому, что молекулы сахара, плавающие в растворе, обладают определенной асимметрией. Точнее, молекулы сахара (как и многие другие органические молекулы) могут существовать в двух вариантах – «правом» и «левом» – это зеркальные отражения друг друга. Живые организмы (в частности, сахарная свекла) вырабатывают молекулы сахара одной ориентации. Почему это происходит, не до конца ясно, но, поскольку мы говорим об астрономии, это вопрос второстепенный. Пусть с этой загадкой природы разбираются другие.

Важно то, что магнитное поле действует на свет так же, как и сахар: происходит поворот плоскости поляризации. Эффект Фарадея в магнитном поле можно, разумеется, наблюдать в лабораторном эксперименте. Теоретическая физика объясняет причину этого явления. О ней написано в одной из книг замечательного отечественного физика, лауреата Нобелевской премии В. Л. Гинзбурга. Она переведена на английский язык, и астрономы, начавшие наблюдать магнитные поля с помощью эффекта Фарадея, учились по этой книге.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное