Читаем Небесные магниты. Природа и принципы космического магнетизма полностью

Приезжаю на пару дней в одну очень известную зарубежную научную группу. Делаю доклад по недавним работам. Все о'кей. Заодно меня спрашивают: «Мы тут попробовали формулы из вашей старой работы. Вы их использовали для интерпретации наблюдений в дисках галактик. А в наших джетах они как-то плохо работают. Почему?» Отвечаю: «Ну, наверное, потому что струя все-таки не диск, а там все интегралы взяты для случая диска». Удивляются: «Так что же, нам все эти интегралы пересчитывать?»

Так что в вопросе о магнитных полях в джетах еще много неясного и работы хватает.

3. Магнитные поля аккреционных дисков

Еще один вид небесных тел, имеющих отношение к нашему разговору, – это аккреционные диски, возникающие вокруг звезд, черных дыр и других компактных тел при падении на них вещества из окружающего пространства. Это падение и называется словом «аккреция». Проблема в том, что совсем не просто сконцентрировать в малом объеме первоначально рассеянное вещество этого тела и заставить его упасть на центральное тело. Разумеется, это падение связано с силой тяготения. Проблема в том, что это вещество совсем не обязательно находится в покое. Если частичка вещества расположена далеко от центрального тела и двигается в более или менее произвольном направлении, то у нее есть заметный угловой момент, пропорциональный скорости и расстоянию. Угловой момент – сохраняющаяся величина; опять вспоминаем пример про фигуристку, быстро вращающуюся во время исполнения своей программы. Вещество приближается к центральному телу, угловой момент сохраняется, расстояние уменьшается, значит, растет скорость. Непонятно, куда деть этот угловой момент при падении вещества на центральное тело.

Проблема с угловым моментом становится еще более острой при перетекании вещества с одного тела на другое, скажем с одной звезды двойной системы на другую. Тут уж наличие углового момента очевидно: звезды двойной системы обращаются вокруг общего центра масс.

Как компромисс между тяготением и сохранением углового момента и возникает аккреционный диск. Изучение свойств аккреционных дисков тоже захватывающая область астрофизики. В этой области отечественная наука отметилась всем известными (в узких кругах, конечно) учеными: много лет назад Н. И. Шакура и Р. А. Сюняев написали основополагающую статью про аккреционные диски с фантастическим индексом цитирования – не к ночи вспомним наукометрию[18].

Аккреционные диски чем-то напоминают спиральные галактики. Собственно, и те и другие плоские именно потому, что в них борются сила тяготения и сохранение углового момента.

Аналогия между спиральными галактиками и аккреционными дисками в течение многих лет очевидна специалистам по динамо. Специалисты по аккреционным дискам не сомневаются, что магнитное поле очень помогло бы решить их задачи.

Казалось бы, в чем проблема? Перелицовка старых работ не кажется таким уж трудным занятием. И в самом деле, на эту тему уже написано довольно много работ, но вопрос все-таки еще далеко не так ясен, как для галактик. Не будем говорить обо всех возникающих в этом разделе теории динамо проблемах, достаточно двух примеров.

Спиральные галактики, по крайней мере ближайшие из них, хорошо видны в достаточно большой телескоп как протяженные объекты. Некоторые из них, например известная всем людям моего поколения по знаменитому когда-то роману И. А. Ефремова туманность Андромеды, видны на небе невооруженным глазом. Очень многие их характеристики, важные для понимания работы динамо, можно непосредственно наблюдать. А аккреционные диски слишком малы для таких наблюдений. Об их строении приходится судить по косвенным признакам. Опыт картирования поверхности звезд показывает, что такое изучение возможно, но от возможности до реальности путь неблизкий.

Другая проблема заключается вот в чем: очевидно, что магнитное поле не падает на ту же туманность Андромеды из внешних источников – просто неоткуда. Для аккреционных дисков в двойных системах это совсем не так очевидно – на звездах двойной системы вполне могут быть свои магнитные поля. Это внешнее магнитное поле, разумеется, ничем не хуже того, которое производится механизмом динамо в самом диске. Задачами о падении и втягивании этого внешнего магнитного поля в аккреционный диск тоже занимаются специалисты, в частности в Челябинске. Но еще до конца не ясно, как сосуществуют оба этих источника магнитного поля в аккреционных дисках.

В общем, пространство для исследований широкое.

4. Начальное магнитное поле, космология и элементарные частицы

Динамо, строго говоря, не создает магнитное поле из ничего, оно лишь экспоненциально быстро усиливает начальное очень слабое магнитное поле.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное