Читаем Небесные механики полностью

Слайфер плотно закрыл пластинку в спектрографе и продолжил наблюдения в следующую ночь, семь часов собирая свет Андромеды. Он был недоволен общим временем экспозиции и вернулся к телескопу и в новогоднюю ночь 31 декабря. Все люди собирались за праздничными столами, а Слайфер, забыв о празднике, накапливал на пластинке нежный отпечаток звёздного света… К полуночи погода испортилась. Слайфер с досадой закрыл телескоп и вернулся на землю к людям – пить с ними шампанское и делать всё, что полагается обычным хомо сапиенс в Новый год.

– Значит, астрономы уже не совсем обычные хомо сапиенсы, они уже немного хомо галактикусы! – сказал Андрей.

– Возможно, – улыбнулась Никки и продолжила: – В январе 1913 года Слайфер начинает детально исследовать все четыре полученных спектра туманности Андромеды.

Результат потряс астронома.

– А что ожидал получить Слайфер? – спросила Галатея.

– Обычно скорость движения звёзд относительно Земли составляет около десяти километров в секунду. Такие же скорости должны иметь спиральные туманности, если они являются «украшением» вокруг звёзд. Если же туманность Андромеды – большое внегалактическое скопление звёзд, то таким космическим объектам полагалось, по общему мнению, ещё медленнее плавать в пространстве – как крупным китам в океане.

А по расшифрованным спектрам Слайфера выходило, что туманность Андромеды летит к Земле с сумасшедшей скоростью в триста километров в секунду – или больше миллиона километров в час!

– Какую крупную космическую рыбу поймал Слайфер своей стеклянной пластинкой! – восхитился Андрей.

А Галатея забеспокоилась:

– А что случится с нашей Землей, когда Андромеда долетит до нас?

– Пока этого никто не знает, – пожала плечами Дзинтара.

– И как же по спектрам можно определить скорость галактики? – поинтересовался Андрей.

– Эффект Доплера устанавливает прямую связь между скоростью движения тела к нам или от нас и величиной смещения его спектра. Поэтому смещение спектра Андромеды в фиолетовую сторону означало, что она очень быстро движется к нам. Если же такая скорость реальна, то туманность Андромеды не могла принадлежать к нашей Галактике, потому что гравитационное поле нашего Млечного Пути не способно удержать в своих пределах такие быстрые объекты.

Но если туманность Андромеды – внегалактический объект, то такая его стремительность переворачивала все традиционные представления о космосе! Слайфер, понимая, что ошибка тут недопустима, отправляет копию полученных спектров в Ликскую обсерваторию, астроному Фэссу, который тоже занимался изучением космических спектров.

Когда Фэсс получил данные Слайфера с просьбой о независимом измерении, то он испытал горчайшее разочарование – ведь ещё в 1908 году он снял на крупнейшем, 36-дюймовом, Ликском телескопе спектр Андромеды и обнаружил в нём сильное синее смещение линий! Но Фэсс даже не допускал, что Андромеда может иметь такую скорость движения, и без колебаний отнёс этот результат к неисправности спектрографа. И вот он смотрит на аналогичный, но гораздо более убедительный результат, полученный Слайфером на меньшем телескопе, – и понимает, что упустил свой звёздный шанс!

Приходит февраль, и приходит уверенность Слайфера в полученных результатах. Он публикует в бюллетене Лоуэлловской обсерватории краткую заметку на девять абзацев.

Новость о мчащейся к Земле туманности Андромеды производит в астрономическом обществе впечатление разорвавшейся гранаты!

Сразу находятся скептики – вроде директора Ликской обсерватории Кэмпбелла, который считает, что ошибка наблюдений Слайфера должна быть очень велика. Но вскоре Кэмпбелл был посрамлён в своём скептицизме данными собственных сотрудников: скорость движения Андромеды подтвердилась и наблюдениями на Ликской обсерватории.

Слайфер раскопал «золотую жилу» и не думает останавливаться: он берётся за получение спектров других туманностей. Но эта задача ещё труднее, потому что эти спиральные облачка слабее туманности Андромеды.

Слайферу всё-таки удаётся измерить спектр туманности Сомбреро. Весто находит, что она движется со скоростью тысяча километров в секунду – в три раза быстрее Андромеды и в противоположном направлении – от Земли!

К лету 1914 года Слайфер измерил спектры пятнадцати туманностей. Это был научный подвиг. Каждая пластинка требовала суммарной экспозиции 12–14 часов, что означало наблюдение в течение нескольких ночей. Современные телескопы имеют точные электрические моторы, которые медленно поворачивают телескоп вслед за наблюдаемым объектом, компенсируя вращение Земли, ведь если не менять положение телескопа, то выбранная звезда или туманность быстро покинет поле зрения инструмента.



Телескоп Лоуэлловской обсерватории не имел современной системы постоянного слежения за движущимся звёздным небом. Слайфер не мог отойти от телескопа и спектрографа, постоянно следя за направлением инструмента.

– Как вы смогли так долго стоять у телескопа? – поражённо спрашивали Слайфера другие астрономы. Он сухо отвечал:

– Я прислонялся к нему.

Галатея восхищённо сказала:

– Он настоящий герой!

Перейти на страницу:

Все книги серии Научные сказки

Похожие книги

История России
История России

Издание описывает основные проблемы отечественной истории с древнейших времен по настоящее время.Материал изложен в доступной форме. Удобная периодизация учитывает как важнейшие вехи социально-экономического развития, так и смену государственных институтов.Книга написана в соответствии с программой курса «История России» и с учетом последних достижений исторической науки.Учебное пособие предназначено для студентов технических вузов, а также для всех интересующихся историей России.Рекомендовано Научно-методическим советом по истории Министерства образования и науки РФ в качестве учебного пособия по дисциплине «История» для студентов технических вузов.

Александр Ахиезер , Андрей Викторович Матюхин , И. Н. Данилевский , Раиса Евгеньевна Азизбаева , Юрий Викторович Тот

Педагогика, воспитание детей, литература для родителей / Детская образовательная литература / История / Учебники и пособия / Учебная и научная литература
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки