Читаем Небесные сполохи и земные заботы полностью

Но теперь атомщики занимались еще и другим. Их особенно стало интересовать газообразное вещество со значительной примесью свободных заряженных частиц или вовсе состоящее только из них - плазма. Плазму можно считать четвертым состоянием вещества, потому что при нагревании можно последовательно переводить вещество из твердого состояния в жидкое, в газообразное и потом - в плазму. Если удастся нагреть вещество еще больше - до очень высоких температур, то быстро-движущиеся тяжелые положительно заряженные ядра смогут преодолеть силы электрического отталкивания и подойти друг к другу настолько близко, что попадут под влияние других, ядерных, сил, действующих на малом расстоянии. Ядра сольются, произойдет термоядерная реакция ("термо" - потому что нужна высокая температура). Такие реакции должны идти в недрах Солнца и идут, к печали человечества, на Земле - при взрыве водородной бомбы.

С управляемой термоядерной реакцией связаны надежды людей на получение неисчерпаемого источника энергии. Еще с помощью плазмы можно прямо, без всяких турбин, превращать тепловую энергию в электрическую. При этом сокращаются потери энергии: коэффициент полезного действия обычных тепловых электростанций сравнительно мал.

Пламя, даже от спички, - плазма. Таинственная шаровая молния - тоже. Но в общем на поверхности Земли в естественных, не лабораторных условиях плазмы немного.

Другое дело - в космосе. Во Вселенной 99 процентов вещества пребывает в состоянии плазмы.

В начале 60-х годов уже работали на орбитах первые космические корабли. По инициативе известного специалиста по космическим лучам С. Н. Вернова, впоследствии академика, на спутниках были подняты счетчики заряженных частиц, применяемые в ядерной физике. Проблемы всевозможных земных, лабораторных и космических плазм сплелись вместе. Время открывало перед молодыми физиками-атомщиками интереснейшие перспективы.

Первые же прямые наблюдения в космосе показали, что люди неверно представляли себе обстановку в нем. Считалось, что количество частиц должно равномерно убывать по мере удаления от Земли. Однако на расстояниях порядка тысячи километров от поверхности планеты и дальше их оказалось намного больше, чем ожидалось. Области максимальной плотности получили название радиационных поясов Земли (слово "радиация" в данном случае означает присутствие энергичных частиц; когда говорят "радиоактивное облучение", то имеют в виду и облучение потоком таких частиц).

Ясно было, что сила земного притяжения не может удерживать на таких расстояниях от Земли столько частиц.

Что же мешало этим частицам разлететься?

Современная физика, ищущая подходы к термоядерному синтезу, могла дать ответ раньше, чем прозвучал вопрос: эти заряженные частицы захвачены магнитным полем Земли. В самом деле, для того чтобы началась термоядерная реакция - слияние двух ядер тяжелого водорода в одно ядро гелия, требуется удержать ядра водорода в небольшой области пространства в течение достаточно длительного времени: двигаясь внутри этой области, они в конце концов встретятся и сольются. Удерживать ядра помогает магнитное поле, которое затрудняет, как известно, передвижение заряженных частил, в поперечном к нему направлении на значительные расстояния: попав в такое поле, частица как бы блуждает в нем и не может выйти или выходит, но спустя какое-то время. Длительность этих блужданий зависит от того, как поле распределено в пространстве - говорят, от "конфигурации магнитного поля" и еще от того, в какую его точку и с какой скоростью была запущена частица.

Еще в начале века, задолго до термоядерщиков, эти вопросы изучали астрофизики. Их интересовало, как ведут себя заряженные частицы космической плазмы. Движение каждой такой частицы представляет собой микроскопический электрический ток. Поэтому в космосе существуют магнитные поля и, кроме того, небесные тела, имеющие собственное магнитное поле, оказывают влияние на движение космической плазмы. К середине нашего века разработки на эту тему могли уже считаться самостоятельной наукой. Она и послужила фундаментом для начавшихся потом исследований чисто земных проблем - термоядерного синтеза и прямого преобразования энергии. В развитие этих направлений были вложены крупные средства, и в них стало работать большое число ученых. Теперь исследователи космоса, в свою очередь, могли пользоваться результатами земных разработок по интересующей их теме. Это было тем более кстати, что появились спутники и космические корабли и изучение космоса резко двинулось вперед.

Из астрофизики выделилась молодая наука космофизика, изучающая космос на основе прямых измерений в нем.

Перейти на страницу:

Похожие книги

Об интеллекте
Об интеллекте

В книге Об интеллекте Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики, описывающую систему «память-предсказание» как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Джефф Хокинс предполагает, что идеи, сформулированные им в книге Об интеллекте, лягут в основу создания истинного искусственного интеллекта – не копирующего, а превосходящего человеческий разум. Кроме этого, книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.Книга рекомендуется всем, кого интересует устройство человеческого мозга и принципы его функционирования, а также тем, кто занимается проблемами разработки искусственного интеллекта.

Джефф Хокинс , Сандра Блейксли

Прочая научная литература / Образование и наука / Научная литература