Читаем НЕэлектронные компьютеры и их создатели полностью

Римляне смогли сделать важный переход от счетной доски к абаку в более близком к нынешнему представлению о нем. Они заменили архаичную греческую систему на более удобную римскую, уже десятичную, но еще не позиционную. Благодаря этому громоздкие каменные или деревянные доски уступили место небольшим бронзовым планшетам, а фишки разного достоинства одинаковым шарикам, но по совершенству этим устройствам, несмотря на внешнюю схожесть, до суаньпаня было далеко.

Европейская история абака делится на три периода – античный с III века до н.э. до V века н.э., когда он получил широкое распространения в Греции и в Риме. В Темные века (с VI по X век) в Западной Европе были утеряны многие античные достижения, а том числе и абак. В третий – средневековый с XI по XV век, когда были попытки его возрождения. Несостоявшемуся возращению на сцену способствовал все тот же Папа Сильвестр II (946 – 1003), успешно сочетавший церковную детальность с научной. Он открыл современникам знания, накопленные в античном и арабском мире, но забытые в Европе после падения Римской империи. Папа Сильвестр использовал арабские цифры и ноль, поэтому мог считать чрезвычайно быстро, за что современники обвиняли его в магии. Но усилий, приложенных им, на возрождение абака не хватило, этот инструмент изредка встречался в Европе до XVI века, когда он окончательно уступил способам с использованием записи, единственный музейный экземпляр сохранился в Страсбургском музее. Нередко с абаком связывают итальянского математика Леонардо Фибоначчи, поскольку его основной труд назван «Книга абака» (Liber Abaci, 1202), виной тому название его труда. Здесь налицо случай, называемый «ложным другом переводчика». «Книга абака» очень большое и малодоступное для современников рукописное изданий (тираж несколько экземпляров), где изложены начала теории чисел, алгебры и геометрии, но в ней нет ни единого слова про абак, а названа книга так, по той причине, что слово абак в XIII века было синонимом математики.

Сохранились документальные свидетельства лишь об одной попытке усовершенствовать абак, ее предпринял в 1616 году англичанин Уильям Пратт. Он изобрел устройство, названное им «Арифметической драгоценностью» (Arithmeticall Jewell) и описал его в книге, представляющей инструкцию по работе. Это карманного формата планшет, на котором размещена матрица из вращающихся сегментов-полукружий с нанесенными на них цифрами. Вращая их каким-то образом, можно задавать два числа и выполнимое действие. Никакого детального описания этого устройства нет, поэтому остается принять на веру возможность получения таким образом результата.

<p>Русское чудо</p>

В России же, напротив, конструкция счетов активно совершенствовалась, во второй половине XIX века, на их основе было создано несколько оригинальных устройств, в том числе самосчеты В. Я. Буняковского, изготовленные в единичном экземпляре, они хранятся в Политехническом музее. Самосчеты внешне совсем не похожи на русские счеты, но имеют тот же принцип действия, решения, предложенные другими изобретателями также сохраняли связь с традицией. Генерал-майор Ф. М. Свободский изобрел в 1828 году прибор, с дополнительными полями для запоминания промежуточных результатов. А. К. Больман в 1860 году, изготовил счеты с 9 косточками, на них можно было возводить в степень, извлекать корни, вычислять сложные проценты в дополнение четырем действиям. Счеты Ф. В. Езерского были дополнены валиками для умножения и деления.

В конце XIX века было сделано множество изобретений, усовершенствовавших классические счеты, наиболее успешное принадлежит военному инженеру капитану Юрию Дьякову. Под названием New Russian Abacus оно было представлено на Парижской выставке 1878 года. Очень похожий компактный прибор создал американец Джеймс Бассет, он успешно продавался до 1930 года.

Но все же следует признать, что счеты отлично подходят для более простых задач, ограниченных двумя действиями – сложение и вычитание. То, как блистательно владели им русские предприниматели, описал А.П. Чехов в рассказе «Репетитор», где купец Удодов, решив задачу, с удовлетворением говорит: «И без алгебры решить можно». Но они совсем не годятся для тех инженерных расчетов, где, как минимум, требуются умножение и деление.

<p>Глава 4</p><p>Основоположники</p>
Перейти на страницу:

Похожие книги

10 гениев спорта
10 гениев спорта

Люди, о жизни которых рассказывается в этой книге, не просто добились больших успехов в спорте, они меняли этот мир, оказывали влияние на мировоззрение целых поколений, сравнимое с влиянием самых известных писателей или политиков. Может быть, кто-то из читателей помоложе, прочитав эту книгу, всерьез займется спортом и со временем станет новым Пеле, новой Ириной Родниной, Сергеем Бубкой или Михаэлем Шумахером. А может быть, подумает и решит, что большой спорт – это не для него. И вряд ли за это можно осуждать. Потому что спорт высшего уровня – это тяжелейший труд, изнурительные, доводящие до изнеможения тренировки, травмы, опасность для здоровья, а иногда даже и для жизни. Честь и слава тем, кто сумел пройти этот путь до конца, выстоял в борьбе с соперниками и собственными неудачами, сумел подчинить себе непокорную и зачастую жестокую судьбу! Герои этой книги добились своей цели и поэтому могут с полным правом называться гениями спорта…

Андрей Юрьевич Хорошевский

Биографии и Мемуары / Документальное