Технологические новации последних лет, значительно увеличив перспективы солнечной энергетики, позволили перейти к сооружению достаточно крупных энергоустановок, соответствующих промышленным электростанциям средней мощности. В настоящее время в основном строят солнечные термоэлектростанции (гелиотермоэлектростанции) одного из двух типов: солнечные электростанции башенного типа (рис. 40) и солнечные электростанции распределенного (модульного) типа (рис. 41).
Рис. 40 (a). Солнечная электростанция башенного типа
Рис. 40 (b). Солнечная электростанция башенного типа
В башенных солнечных гелиотермоэлектростанциях используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации энергии в несколько тысяч раз. Солнечные лучи, отражаясь от множества плоских зеркал, концентрируются на центральном приемнике, размещенном на центральной башне. При этом требуется сложная система слежения отдельных зеркал (гелиостатов) за Солнцем за счет их вращения вокруг двух осей, управляемая ЭВМ. Главным недостатком башенных солнечных электростанций является их высокая стоимость и большая занимаемая площадь. Так, для размещения солнечной электростанции мощностью 100 МВт требуется площадь в 200 га, в то время как для АЭС мощностью 1000 МВт – всего 50 га.
В солнечных электростанциях распределенного (модульного) типа (рис. 41) используется большое число отдельных модулей. Каждый модуль состоит из опоры, на которой крепится параболический концентратор солнечного излучения и приемник, расположенный в фокусе концентратора и используемый для нагрева рабочей жидкости. Нагретая рабочая жидкость подается в тепловой двигатель, соединенный с электрогенератором. При небольшой мощности солнечные электростанции модульного типа более экономичны, чем башенные. В солнечных электростанциях модульного типа обычно используются линейные концентраторы солнечной энергии с максимальной степенью концентрации около 100.
Рис. 41. Солнечная электростанция распределенного (модульного) типа
Значительное преимущество гелиотермоэлектростанций – их способность к интеграции в традиционные тепловые электростанции. В качестве «солнечной топки» их можно интегрировать в традиционные тепловые циклы параллельно с камерами сгорания для ископаемых видов топлива. Однако при стоимости энергии на современных солнечных электростанциях даже в наиболее благоприятных условиях 0,10—0,15 долл./кВтч солнечная энергетика остается слишком дорогостоящей, чтобы без субсидий быть конкурентоспособной на внутренних рынках. Поэтому цель ведущихся в настоящее время научно-исследовательских и опытно-конструкторских работ состоит в снижении стоимости энергии до 0,05—0,08 долл./кВтч, а в долгосрочной перспективе и до уровня ниже 0,05 долл./кВтч.
Энергия солнечного излучения может быть преобразована в постоянный электрический ток и посредством солнечных батарей – устройств, состоящих из тонких пленок кремния или других полупроводниковых материалов (рис. 42). Преимущество фотоэлектрических преобразователей (ФЭП) обусловлено отсутствием подвижных частей, их высокой надежностью и стабильностью. При этом срок их службы практически не ограничен. Они имеют малую массу, отличаются простотой обслуживания, эффективным использованием как прямой, так и рассеянной солнечной радиации. Модульный тип конструкций позволяет создавать установки практически любой мощности, что очень удобно для потребителя. Недостатками ФЭП являются высокая стоимость и низкий КПД. Солнечные батареи являются основным источником энергопитания в космосе, а на Земле используются в основном для энергоснабжения автономных потребителей мощностью до 1 кВт, питания радионавигационной и маломощной радиоэлектронной аппаратуры, привода экспериментальных электромобилей и самолетов.
Рис. 42. Солнечные батареи (ФЭП)
В США, занимающих ведущие позиции в области солнечной энергетики, реализуется несколько крупных проектов как на основе фотовольтаического преобразования излучения, так и на основе его теплового действия. Крупнейший проект, реализуемый на границе Калифорнии и Невады в пустыне Мохаве, электростанция Ivanpah, после долгих лет строительства, тестирования и развития в 2014 г. была официально введена в строй. Она включает систему из 300 тысяч управляемых плоских зеркал (гелиостатов) размером с дверь гаража каждое, занимающих площадь в 16 км2, которые концентрируют солнечное излучение на три одинаковых башни высотой по 140 метров (рис. 43). В солнечных коллекторах, расположенных наверху башен, тепло солнечного излучения превращает воду в водяной пар, направляемый на лопатки турбин, производящих электроэнергию, как в обычных ТЭЦ. По оценкам, этой энергии должно быть достаточно для обеспечения нужд 140 тысяч домохозяйств Калифорнии.
Рис. 43. Солнечная электростанция в пустыне Мохаве (США)