Читаем Нейронный сети. Эволюция полностью

Метод градиентного спуска позволяет находить минимум, даже не располагая знаниями свойств этой функции, достаточными для нахождения минимума другими математическими методами. Если функция очень сложна, где нет простого способа нахождения минимума, мы в этом случае можем применить метод градиентного спуска. Этот метод может не дать нам абсолютно точного ответа. Но все же это лучше, чем вообще не иметь никакого решения. А его суть, как было описано выше – постепенно приближаться к ответу, шаг за шагом, тем самым медленно, но верно, улучшая нашу позицию.

Для наглядности, рассмотрим использование метода градиентного спуска на простейшем примере.

Возьмём график функции, которая своими значениями иллюстрирует склон. Если бы это была функция ошибки, то нам нужно найти такое значение (х), которое минимизирует эту функцию:



Значение шага (скорости обучения), как мы говорили ранее, играет тоже не малую роль, при слишком большом значении, мы быстро спускаемся, но можем переступить минимум функции – страдает точность. При очень маленьком значении величины скорости обучения, нахождение минимума потребует гораздо больше времени. Нужно подобрать величину шага такой, чтоб он удовлетворяла нас и по скорости, и по точности. При нахождении минимума, наша точка будет коррелировать, возле значения минимум, в чуть большую и меньшую сторону на величину шага. Это все равно что – когда спустившись вплотную к подножью, мы сделали шаг и оказались чуть выше подножья, повернувшись сделали такой же шаг назад, и поняв, что опять находимся чуть выше, повторяли эти действия до бесконечности. Но при этом, мы все равно находились бы очень близко к подножью, потому как величина шага, в общем объеме, ничтожна, поэтому мы можем говорить – что находимся в самом низу.



Выходной сигнал нейрона представляет собой сложную функцию со многими входными данными, и соответствующие им – весовыми коэффициентами связи. Все они коллективно влияют на выходной сигнал. Как при этом подобрать подходящие значения весов используя метод градиентного спуска? Для начала, давайте правильно выберем функцию ошибки.

Функция выходного сигнала не является функцией ошибки. Но мы знаем, что есть связь между этими функциями, поскольку ошибка – это разность между целевыми тренировочными значениями и фактическими выходными значениями (Е=Y-y).

Однако и здесь не все так гладко. Давайте взглянем на таблицу с тренировочными данными и выходными значениями для трех выходных узлов вместе с разными функциями ошибок:





Функция ошибки, которой мы пользовались ранее (целевоевыход), не совсем нам подходит, так как можно видеть, что если мы решим использовать сумму ошибок по всем узлам в качестве общего показателя того, насколько хорошо обучена сеть, то эта сумма равна нулю! Нулевая сумма означает отсутствие ошибки. Отсюда следует, что простая разность значений (целевоевыход), не годится для использования в качестве меры величины ошибки.

Во втором варианте, в качестве меры ошибки используется квадрат разности: ((целевоевыход)^2). Этот вариант предпочтительней первого, поскольку, как видно из таблицы, сумма ошибок на выходе не дает нулевой вариант. Кроме того, такая функция имеет еще ряд преимуществ над первой, делает функцию ошибки непрерывно гладкой, исключая провалы и скачки, тем самым улучшая работу метода градиентного спуска. Еще одно преимущество заключается в том, что при приближении к минимуму градиент уменьшается, что уменьшает корреляцию через точку минимума.

Чтобы воспользоваться методом градиентного спуска, нам нужно применить метод дифференциального исчисления. Не пугайтесь, всё не так сложно, как может показаться.

Дифференциальное исчисление – это просто математически строгий подход к определению величины изменения одних величин при изменении других. Например, мы можем говорить о скорости изменения чего угодно, ускорения или любой другой физической величины, или математической функции.


Не изменяющиеся величина

Если мы представим автомобиль, движущийся с постоянной скоростью в 1,5 км/мин, то отвечая на вопрос, как меняется скорость автомобиля с течением времени, ответ утвердительный никак, ноль, так как его скорость постоянна:


Напомню, дифференциальное исчисление сводится к нахождению изменения одной величины в результате изменения другой. В данном случае нас интересует, как скорость изменяется со временем.

Сказанное, можно записать в следующей математической форме:





Линейное изменение


А теперь представим тот же автомобиль, с начальной скоростью 1,5 км/мин, но в определенный момент, водитель жмет на газ, и автомобиль начинает набирать скорость (равномерно ускоряться). И по истечении трех минут, от момента, когда мы нажали педаль газа, его скорость станет равной 2,1 км/мин.


Из графика видно, что увеличение скорости автомобиля, происходит с постоянной скоростью изменения (равномерным ускорением), откуда функция зависимости скорости от времени, выглядит как прямая линия.

Перейти на страницу:

Похожие книги

Чем женщина отличается от человека
Чем женщина отличается от человека

Я – враг народа.Не всего, правда, а примерно половины. Точнее, 53-х процентов – столько в народе женщин.О том, что я враг женского народа, я узнал совершенно случайно – наткнулся в интернете на статью одной возмущенной феминистки. Эта дама (кандидат филологических наук, между прочим) написала большой трактат об ужасном вербальном угнетении нами, проклятыми мужчинами, их – нежных, хрупких теток. Мы угнетаем их, помимо всего прочего, еще и посредством средств массовой информации…«Никонов говорит с женщинами языком вражды. Разжигает… Является типичным примером… Обзывается… Надсмехается… Демонизирует женщин… Обвиняет феминизм в том, что тот "покушается на почти подсознательную протипическую систему ценностей…"»Да, вот такой я страшный! Вот такой я ужасный враг феминизма на Земле!

Александр Петрович Никонов

Публицистика / Прочая научная литература / Образование и наука / Документальное
Введение в логику и научный метод
Введение в логику и научный метод

На протяжении десятилетий эта книга служила основным учебником по логике и научному методу в большинстве американских вузов и до сих пор пользуется спросом (последнее переиздание на английском языке увидело свет в 2007 г.). Авторам удалось органично совместить силлогистику Аристотеля с формализованным языком математической логики, а методология познания излагается ими в тесной связи с логикой. Освещаются все стандартные темы, преподаваемые в базовом курсе по логике, при этом их изложение является более подробным, чем в стандартных учебниках. Как синтетический курс логики и научной методологии не имеет аналога среди отечественных учебников.Значительная часть книги посвящена исследованию проблем прикладной логики: экспериментальным исследованиям, индукции, статистическим методам, анализу оценочных суждений.В книге дается анализ предмета логики и природы научного метода, рассмотрение той роли, которую методы логики играют в научном познании, а также критика многих альтернативных подходов к истолкованию логики и науки в целом. В этом отношении она представляет собой самостоятельное философское произведение и будет интересна специалистам в области философии и методологии науки.Для преподавателей логики, философии науки, теории аргументации и концепций современного естествознания, студентов, изучающих логику и методологию науки.

Моррис Коэн , Эрнест Нагель

Философия / Прочая научная литература / Образование и наука