Повторим все расчеты, используя начальное значение А=0,4
. Первый тренировочный пример дает нам у = Ax = О,4 * 40 = 16. При x = 40 и коэффициенте А = 0,4, ошибка E = T – y = 21 – 16 = 5. Чтобы график прямой, не проходил через точку с нашими координатами, а проходил выше её, то принимаем целевое значение – T = 21.Рассчитаем поправку: А
= L (Е / х) = 0,5*(5 / 40) = 0,0625. Обновленное значение: А = A + А = 0,4 + 0,0625= 0,4625.Сглаженное уточнение: y =
Ax = 0,4625 * 40 = 18,5.Теперь перейдем к расчетам следующего тренировочного примера.
Используя обновлённое на первом прогоне значение А
, для второго тренировочного примера у = Ax = О,4625 * 20 = 9,25.Значение, у = 9,25
– всё так же далеки от значения y = 39, но мы все равно движемся в нужном направлении, но уже с меньшой скоростью.При x
= 20 и коэффициенте А = 0, 4625, ошибка E = T – y = 39 – 9,25 = 29,75. Так как мы хотим, чтобы график прямой, не проходил через точку с нашими координатами, а проходил ниже её, то принимаем целевое значение – T = 39. Рассчитаем поправку А = L (Е / х) = 0,5*(29,75 / 20) = 0,74375. Обновлённое значение А = A + А = 0,4625+ 0,74375 = 1,20625.Сглаженное уточнение y = = Ax = 1,20625 * 20 = 24,125
.Теперь еще раз отобразим на координатной диаграмме, начальный, улучшенный и окончательный варианты разделительной линии:
Можно убедиться в том, что сглаживание обновлений приводит к более удовлетворительному расположению разделительной линии.
Если еще уменьшить скорость обучения L
и повторить расчеты с первым и вторым обучающим примером, то в итоге наша разделительная линия окажется очень близко к воображаемой линии.Применяя способ уменьшение величины обновлений с помощью коэффициента скорости обучения, ни один из пройденных тренировочных примеров, не будет доминировать в процессе обучения.
ГЛАВА 2
Изучаем Python
В этой главе мы будем создавать собственные нейронные сети. Сначала создадим модель работы искусственного нейрона, а затем научимся моделировать сеть из множества нейронов.
Создаем нейронную сеть на Python
При моделировании нейронных сетей, мы будем использовать язык программирования Python.
Почему Python? Он очень прост в освоении, кроме того, нейронные сети создают и обучают в основном на этом языке. Кроме того, Python очень популярный и распространённый язык программирования.
О Python, можно рассказывать долго и много, но мы будем изучать Python лишь в том объеме, который необходим для достижения нашей цели – изучить работу нейронных сетей.
Установка пакета Anaconda Python
Посетите сайт –на котором предлагаются различные варианты установки Anaconda Python. Я использую пакет Anaconda, для операционной системы Windows, вы можете выбрать другие варианты – OS X или Linux. Пакет Anaconda предоставляет удобное средство интерактивной разработки Jupyter Notebook, в котором необычайно удобно писать и проверять программный код. На момент написания книги, доступен пакет Anaconda 5.0.1, и Python 3.6 – который и рекомендую установить.
Если, к тому времени, когда вы посетите сайт, все будет выглядеть иначе, не пугайтесь, сути дела это не поменяет.
Простое введение в Python
После установки пакета Anaconda, запустите интерактивную оболочку Jupyter Notebook, нажмите на кнопку New у правого края окна и выберите в открывшемся меню пункт Python 3, что приведет к открытию пустого блокнота:
Переменные
В переменных всегда что-то хранится (число, объекты, символы, строки). Попробуем создать переменную x со значением 20. И выведем это значение, на экран, при помощи функции – print. Функция print – выводит на консоль то, что расположено между её скобками:
С переменными, которые хранят числа, можно выполнять различные простейшие действия: складывать, вычитать, умножать, делить и возводить в степень:
Справа от функции print, вы можете видеть комментарии. Делаются они очень просто, для этого, перед комментарием, необходимо поставить знак #, и текст после этого знака, в данной строке, Pytnon будет воспринимать, не как программный код, а как обычную текстовую область.
Кроме числовых переменных есть ещё строковые, с которыми мы тоже можем проделать ряд действий:
Функции
Иногда возникает необходимость повторять одни и те же действия, в ходе написания программы, по многу раз. Облегчить наш труд в подобной ситуации, призваны функции.