Ученые обычно тратили годы на разработку этих теорий, выводя уравнения и уточняя их. Все эти работы резко приостановились, когда было открыто первое слияние нейтронных звезд. Когда зеркала LIGO и
Но не все было убито: некоторые теории Хорндески и расширенные теории Хорндески выжили, поскольку не требовали отличия скорости гравитационных волн от скорости света. Также пока выжили некоторые так называемые теории гравитации с массивным гравитоном. Обычно физики предполагают, что частица, связанная с гравитацией, – гравитон – не имеет массы. Но в этих теориях принимается, что он имеет массу, хотя и очень маленькую, поэтому он не обязательно движется со скоростью света. Тем не менее столкновение двух нейтронных звезд послужило сигналом к очень быстрому удалению с поля некоторых альтернативных теорий гравитации.
Ученые и до этого опровергали их релевантность с помощью других аргументов, не так эффектно, но столь же беспощадно: сначала используя небесные тела нашей Солнечной системы, а совсем недавно и с помощью пульсаров. И до сих пор снова и снова подтверждалась правильность теории Эйнштейна17.
Но чем больше плотность и чем сильнее гравитация (а у пульсаров она настолько сильна, насколько это возможно без дальнейшего коллапса звезды в черную дыру), тем больше вероятность того, что общая теория относительности может оказаться ошибочной. И поэтому ученые неустанно ищут мельчайшие изменения в импульсах пульсаров, чтобы понять, согласуется ли система пульсаров, которую они исследуют, с предсказаниями теории Эйнштейна. Эти результаты наблюдений можно сравнивать и с выводами альтернативных теорий гравитации. Поскольку в таких экспериментах условия более суровые, проверка общей теории относительности с помощью пульсаров позволяет физикам сделать больше выводов и дополнительно исключить некоторые альтернативные теории.
Обычно астрономы используют пульсар, находящийся в двойной системе, например в партнерстве с белым карликом или другой нейтронной звездой, используя его в качестве тестовой массы с прикрепленными очень точными часами. Затем они очень точно вычисляют орбиты пульсаров, тщательно хронометрируя время прихода импульсов. Представьте, что мы с точностью до микросекунды измерили время прихода импульса в данный момент и еще раз через десять лет. Поскольку мы точно знаем, сколько оборотов сделал пульсар между этими двумя измерениями, мы можем вычислить частоту вращения пульсара с точностью до одной микросекунды в десять лет, то есть 1/ (3 x 1014), или одной трехсоттриллионной18.
Кроме того, астрономы могут проанализировать, как изменяется время прихода импульсов в результате прохождения излучения (в данном случае – радиоволн) мимо звезды, являющейся партнером пульсара. Они делают это, измеряя задержку Шапиро, то есть временную задержку из-за искривления света гравитацией. “Мы действительно хорошо умеем измерять время”, – говорит Энн Арчибальд, астроном из Амстердамского университета, и рассказывает такую историю. Когда космический зонд “Кассини” прошел за Солнцем по пути к Сатурну, ученые зарегистрировали радиолокационные сигналы от него и очень точно измерили время их прохождения. Конечно же, поскольку свет из-за влияния гравитации Солнца следовал по изогнутой траектории, ему потребовалось немного больше времени, чтобы добраться до детекторов на Земле. Так и была измерена задержка Шапиро, и “Кассини” произвел лучшее ее измерение. С помощью измерения этой задержки проверяют и вывод альтернативных теорий гравитации о том, какое искривление света они предсказывают. И конечно, вычисление этой задержки позволяет астрономам определять массы самого пульсара и его звезды-компаньона. (Подробнее о задержке Шапиро см. в разделе “Чуть глубже: Законы Кеплера и посткеплеровские параметры”.)