Читаем Нейтронные звезды. Как понять зомби из космоса полностью

В то время как в гостиной Марика Бранчези напряженно всматривалась в экран компьютера, где разворачивалась далекая космическая драма, за происходящим наблюдал и ее старший сын Диего. Вдруг он обратился к ней, тщательно обдумывая и четко произнося каждое слово: “Мам, когда ты закончишь со слиянием двойных нейтронных звезд, мы сможем пойти поесть?”

<p>Чуть глубже: Происхождение золота</p>

Откуда взялся наш мир? Как образовались элементы? Все элементы, существующие на Земле, так или иначе созданы в космосе. В периодической таблице Менделеева 118 элементов, и 94 из них встречаются в природе. Но сразу после Большого взрыва, 13,7 миллиарда лет назад, элементов вообще не было. Существовали только их элементарные составляющие – кварки. Из кварков, обычно встречающихся в триплетах, строятся привычные нам нейтроны и протоны, а из них, в свою очередь, атомы. В эпоху своего младенчества Вселенная была необычайно горячей и плотной, и поэтому кварки не могли связываться. По крайней мере несколько минут кварки существовали в состоянии своеобразного “кваркового супа”. Когда Вселенная несколько расширилась и охладилась, стало возможным объединение кварков в протоны (ядра водорода) и нейтроны, а затем из двух протонов и двух нейтронов образовались ядра гелия.

Расширение Вселенной продолжалось, ее температура продолжала падать. Однако потребовалось еще 380 тысяч лет, чтобы замедлившиеся электроны оказались в ловушках – на орбитах вокруг замедлившихся ядер – и образовались первые, очень легкие атомы. Главным образом это были атомы водорода и гелия, а также, в небольшом количестве, лития. Перенесемся еще на 1,6 миллиона лет вперед, в то время, когда под действием гравитации из облаков межзвездного газа образовались первые звезды и галактики. Тогда же образовались более тяжелые атомы – углерод, кислород и железо. Массивные звезды стали гигантами, и в их ядрах в результате термоядерного синтеза гелий превращается в углерод и появляются магний, азот, кислород, неон и железо. Появление железа означает конец термоядерного синтеза. Но когда звезды умирают в результате взрыва сверхновой, образуются еще более тяжелые элементы – никель, кобальт, медь, марганец, цинк и ванадий.

Однако компьютерные расчеты показали, что мощности взрыва сверхновой недостаточно для образования элементов заметно тяжелее железа. Тогда откуда же появилось все серебро, золото, платина, ртуть, молибден, уран и другие подобные элементы? Ученые предположили, что эти элементы могли образоваться при слиянии нейтронных звезд в ходе так называемого r-процесса – быстрого захвата нейтронов. Буква r указывает на скорость процесса (rapid), при котором в результате последовательности ядерных реакций быстрого захвата нейтронов тяжелыми зародышевыми ядрами (наподобие железа) создаются элементы тяжелее железа. При слиянии нейтронных звезд высвобождается огромное число нейтронов. Нагретые до экстремальных температур нейтроны бомбардируют окружающие их атомы, что и приводит к появлению более тяжелых элементов. Когда впервые удалось обнаружить слияние двух нейтронных звезд, ученые смогли наблюдать голубую килоновую и радиоактивный распад тяжелых элементов, образовавшихся при столкновении.

Другой вопрос, как эти тяжелые элементы попали на Землю. Некоторые из них могли быть доставлены метеоритами. Например, никель и кобальт часто находят в железных метеоритах: железо, никель или кобальт образуются одновременно в процессе нуклеосинтеза при взрывах сверхновых. С другой стороны, они, возможно, присутствовали в веществе, из скопления которого около 4,5 миллиарда лет назад образовалась Солнечная система, а затем со временем эти элементы высвободились из земной коры.

<p>Чуть глубже: Почему килоновая была голубой?</p>

Цвет космического объекта зависит от длины волны излучаемого им света. В разных условиях свет ведет себя либо как волна, либо как частица, а длина волны – это расстояние между двумя гребнями (или двумя впадинами) волны. Длина волны зависит от того, к какому диапазону электромагнитного спектра относится излучаемый свет: длины волн гамма-излучения самые короткие, а радиоволн – самые длинные. Энергия каждого отдельного фотона – элементарной составляющей света – обратно пропорциональна длине волны. Это значит, что чем меньше длина волны, тем больше энергия, соответствующая данному типу излучения. Энергия гамма-лучей очень велика, у радиоволн она гораздо меньше, а энергия видимого света где-то посередине.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука