Однако убедительно доказать, что именно нейтрино “обеспечивают” энергией взрыв сверхновой, гораздо труднее. Ученые пробовали делать трехмерное компьютерное моделирование нейтринного механизма коллапсирующего ядра звезды, но это очень дорого и долго: даже один вычислительный эксперимент может занять несколько месяцев. И наблюдения не слишком помогают понять механизм взрыва сверхновой. “Дело в том, – говорит Стивен Смартт из Университета Квинс в Белфасте, – что вы видите только момент прохождения ударной волны через поверхность звезды-предшественницы”. Наблюдаемое свечение определяется радиусом звезды и количеством материала вокруг нее, а эти характеристики не слишком полезны для понимания механизма взрыва. “Решить этот вопрос можно, измерив кинетическую энергию выброшенного вещества, зная его движение и сравнивая энергию ударной волны и энергию взрыва звезды, – говорит Смартт. – Но это и теоретически трудно сделать, а обследовать непосредственно центр взрыва практически невозможно”.
Уже более тридцати пяти лет ученые изучают эволюцию SN 1987A. Они видели в реальном времени переход от небулярной стадии к остатку сверхновой. Большая загадка – отсутствующая нейтронная звезда: в соответствии с размером звезды-предшественницы (порядка двадцати масс Солнца) она, согласно теории, должна находиться в центре остатка сверхновой. Нейтринные наблюдения свидетельствовали, что на месте ядра исходной звезды действительно образовался компактный объект. Но астрономы ничего не нашли. Одно из возможных объяснений состоит в том, что там просто слишком много “мусора”, скрывающего ядро за плотными тучами пыли и газа. Или, возможно, магнитное поле нейтронной звезды, если она есть, либо слишком сильное, либо слишком слабое для того, чтобы стало возможно образование обычного пульсара. С другой стороны, возможно, на молодую нейтронную звезду упало слишком много выброшенного вещества – так много, что ее масса увеличилась до точки невозврата, вызвав дальнейший коллапс в черную дыру.
Никаких сигналов приближающейся смерти голубого сверхгиганта обнаружить не удалось, хотя ученые наблюдали сверхновую почти сразу после взрыва и знали, какая звезда была ее предшественницей15. Однако, кажется, по крайней мере некоторые звезды предупреждают нас о своей неминуемой кончине. Такую звезду астрономы обнаружили в 2013 году. Обычно новый интересный объект находят так: робот-телескоп сканирует ночное небо, а наблюдатели – дежурные астрономы – принимают поступающие данные и отбирают для последующего изучения те объекты, которые кажутся наиболее интересными и подходящими кандидатами в сверхновые. Таким образом, специалисты по возможности быстро стараются обнаружить космическое событие и начать его наблюдать. Когда, осветив сцену великолепным фейерверком, погиб красный сверхгигант, съемку неба в Северной Калифорнии вел дежурный обзорный робот-телескоп
Так случилось, что на ту ночь одна из групп заранее забронировала время на телескопе
Используя щелевой спектрограф, Перли удалось получить последовательность из четырех спектров. Метод заключается в том, что собранный телескопом свет направляется в спектрограф, где проходит через щель определенной ширины, для того чтобы, с одной стороны, собрать как можно больше света от искомого объекта, а с другой – оставить за кадром близлежащие светила. “Сегодня, в начале 2020 года, это самые ранние спектры, полученные сразу после взрыва сверхновой”, – говорит Ярон.
До тех пор астрономы считали, что невозможно предсказать, взорвется ли звезда в ближайшие десять тысяч лет. Однако группа Ярона выяснила, что, возможно, в будущем мы сможем наблюдать сигналы-предвестники, указывающие на неизбежную смерть гигантской звезды в течение нескольких лет, а может, даже за несколько месяцев до взрыва сверхновой. Подобным сигналом может служить все более и более ускоряющееся извержение вещества из звезды. Это напоминает подземные толчки, обусловленные быстро поднимающейся наверх магмой, которые являются предвестниками извержения некоторых вулканов16.