Сама конструкция GBT немного отличается от конструкции радиотелескопов
Благодаря своей превосходной чувствительности, огромной зоне радиомолчания вокруг, приемникам с очень низким уровнем шума и передовой методике поиска пульсаров телескоп GBT оказался удивительно совершенным инструментом для поисков пульсаров и измерения периодов их вращения. За прошедшие годы GBT обнаружил более двухсот пульсаров, многие из которых – миллисекундные. Он даже обнаружил несколько миллисекундных пульсаров в источниках гамма-излучения, ранее найденных телескопом
В 2009 году GBT обнаружил три пульсара недалеко от галактического центра. Это были не миллисекундные пульсары, а довольно молодые нейтронные звезды, и они не были гравитационно связаны с центральной черной дырой. Большинство астрономов больше интересуются именно миллисекундными пульсарами, потому что, если бы они были связаны с черной дырой, это позволило бы ученым провести точную проверку общей теории относительности (см. главу 8), наблюдая крошечные изменения в “ходе их часов” – точнее, изменения моментов поступления радиоимпульсов от них12.
Тем не менее открытие этих трех пульсаров доказало, что GBT (по крайней мере, в некоторой степени) может “рассмотреть” объекты и сквозь слой “мусора”, заполняющего район галактического центра. Этот “мусор” представляет собой огромное скопление газа и пыли, которые обращаются вокруг галактического центра, закрывая нам обзор. Чем больше газа в межзвездном пространстве, тем больше вокруг носится свободных электронов, взаимодействующих с радиоволнами более низких частот, излучаемых пульсарами. А это означает, что сигнал, регистрируемый астрономами, будет иметь сильную дисперсию, то есть приходящий импульс будет размыт, и это размытие делает идентификацию точечного источника более сложным делом. Еще больше мешает ионизированный газ, который рассеивает любой сигнал. Импульсы по пути к Земле отклоняются толщей газа, а это означает, что им приходится преодолевать большие расстояния, чтобы добраться до нас. Они прибывают в разное время, и это превращает сигнал от точечного объекта в сильно размазанный по времени. Этот эффект затрудняет детектирование импульсов, и, если рассеяние будет сильным, мы вообще не сможем различить отдельные источники, поскольку сигналы от них будут перекрываться13.