Не думайте, что за долгими разговорами о двойственности элементарных частиц забылось наше намерение — увидеть, как получилось, что микромир возник перед мысленным взором физиков в неожиданном образе «мира утраченных траекторий». Напротив, все эти разговоры о волнах-частицах только тому и служили, чтобы в утрате траекторий не было для нас никакой неожиданности. На первый взгляд, может почудиться, что эта цель и впрямь уже достигнута. Конечно, частицы с волновыми свойствами не могут вести себя как твердые шарики. И очень понятно, что пути их движения, наверное, лишены строгой определенности классических траекторий. Это «на ощупь» чувствуется — без доказательств. Во всяком случае, тут уж нечему удивляться, если мы только справились с изумлением перед двойственностью материи! Вот снова получается — грозились непостижимостью, а на деле все так очевидно…
Но что же помешало Эйнштейну принять эту очевидность? Что тут вызвало протест у де Бройля? Почему тридцать пять лет вокруг такой, казалось бы, безобидной вещи спорят физики и философы? Может быть, не так уж безобидна эта утрата классических траекторий в микромире? Да, она оказалась в сто крат мучительней для научного осознания и освоения, чем гибель абсолютного пространства и абсолютного времени в теории относительности.
Физикам 20-х годов пришлось первыми преодолевать отвесную крутизну. Подъем продолжается и сегодня. Но нам по-прежнему — только смерить бы взглядом открывшуюся высоту (или пропасть — если угодно)! Зато теперь у насесть в запасе утешение, что каждому макросуществу по велению самой природы приходится при этом закидывать голову, крепко придерживая шапку, иначе свалится.
История научных исканий всегда помогает вникнуть в их суть. В истории квантовой механики есть интереснейшая черта как раз из тех, что «помогают». Дело было так…
Еще прежде, чем от экспериментаторов пришло прямое доказательство волнообразности электрона, два теоретика совершенно независимо друг от друга принялись разрабатывать механику микровселенной. Уже более четверти века в лабораториях всего мира существовал и копился огромный следственный материал по «Делу об атоме». Он требовал единого объяснения.
И не надо повторять, что, пожалуй, всего больше физиков занимали атомные спектры, все те же атомные спектры, непонятную прерывистость которых Бор в 1913 году сделал понятной, догадавшись, что электроны скачут в атоме по лестнице разрешенных орбит. Помните, до теории Бора Эйнштейн иронически называл спектроскопию «зоологией», а после Бора Зоммерфельд заговорил, о «спектральной музыке». Физик, настроенный деловито, а не насмешливо (зоология!), прозаически, а не возвышенно (музыка!), мог бы признаться, что интерес его к спектрам — в общем-то просто бухгалтерский: они, эти красивые спектры, всего только тщательно разграфленные ведомости по приходу-расходу энергии в атомном хозяйстве. Но в этом и было их бесценное значение для теоретиков.
Каждая линия в спектре — след скачкообразного перехода атома из одного состояния в другое. Линий — множество, целый частокол. Это потому, что у атома много разрешенных природой уровней энергии, целая лестница. Будь у атома всего два дозволенных уровня — одна ступенька, существовал бы лишь один вариант скачка. В спектре сияла бы одна-единственная линия: все атомы такого воображаемого, бедного уровнями вещества испускали бы кванты одинаковой величины — свет одной частоты, одного цвета. Пестрому разнообразию спектральных линий неоткуда было бы взяться. Нет, реальным атомам такая скудость энергетических возможностей незнакома. И боровская лестница уровней энергии прекрасно это объясняла: она запрещала электронам непрерывно скатываться поближе к атомному ядру, непрерывно излучать свет, но она оставляла в их распоряжении десятки вариантов «коротких» и «длинных» скачков с испусканием больших и малых квантов энергии.
Все бы хорошо, но теория Бора не могла растолковать другого, бросающегося в глаза и всем известного факта: одни линии в спектрах ярки, другие — бледны, третьи — едва различимы. Отчего так? Значит, не все квантовые скачки равноправны?
…Физик вносит в пламя горелки крупицу стронция. Пламя тотчас становится ярко-красным. Можно подумать, что стронций являет собой пример как раз того бедного возможностями нереального вещества, в атомах которого есть всего два уровня энергии. Резкие и частые столкновения в высокотемпературном пламени возбуждают триллионы атомов стронциевой крупинки. А затем почти мгновенно электроны в этих атомах, отогнанные от ядра, возвращаются скачками назад, излучая квантами нечаянно приобретенную энергию. Глядя на пламя, физик и в самом деле вправе решить, что атомы стронция не умеют излучать никаких других квантов, кроме фотона красного света. Но это слишком невероятно: даже у атома водорода, где вокруг ядра движется всего один электрон, есть много уровней энергии и квантовые скачки разнообразны. А в сложном атоме стронция — десятки электронов. В чем же дело?