Читаем Неизбежность странного мира полностью

…Чтобы увидеть и снять электрон в атоме, этого карлика надо осветить.

Все лучи видимого спектра — от синего до красного — для такой цели не подходят: длины их волн слишком велики. Это 3–7 тысяч ангстрем (стомиллионных долек сантиметра). А размеры атома водорода в нормальном состоянии порядка 1 ангстрема. Можно ли ожидать, что видимый свет отразится даже не от электрона, а от водородного атома в целом? Это все равно что надеяться на заметное отражение морской волны от одной прибрежной песчинки.

Видимый свет не ощущает отдельного атома как сколько-нибудь серьезное препятствие на своем пути. Окруженные воздухом, мы его молекул не видим, хотя они и освещены солнечным светом — белой смесью красных, желтых, зеленых, синих лучей. Очень уж ничтожно рассеяние этих лучей при встречах с молекулами кислорода, азота, водорода. Оттого и не виден воздух. Но все же чем короче световая волна, тем эти молекулы заметней для луча, как препятствие. (Но точнее нужно сказать, что для солнечных лучей «заметней» не отдельные молекулы, а их тесные скопления, так называемые «флуктуации плотности воздуха», постоянно возникающие в атмосфере.) И потому самые коротковолновые из видимых лучей — синие — рассеиваются воздухом ощутимей, чем красные. В громадной толще земной атмосферы этот крошечный эффект постепенно накапливается и создает глубокую синеву прозрачного неба. А длинноволновые лучи, от желтого до красного, проходят сквозь атмосферу, почти совсем не рассеиваясь, и создают оранжевый цвет Солнца в нашем восприятии.

Если бы электромагнитные волны красного света были, наоборот, самыми короткими, а синего — самыми длинными, мы жили бы под красным небом и синим Солнцем.

Каким же светом высветить в атоме электрон? Согласитесь, что длина волны такого пригодного света должна быть меньше атомных размеров. Ну хоть в десять раз меньше:

только тогда атомный электрон будет возникать на их пути как реальная преграда. Появится надежда наконец-то увидеть воочию странного незнакомца, про которого физики уверенно рассказывают нам тысячи интересных историй, не зная даже, «как он выглядит». А предполагаемая киносъемка в таких лучах возбудит надежду снять под воображаемым микроскопом самый скучный по однообразию, но и самый удивительный по необычайности фильм. Правда, такие ультракоротковолновые лучи — 0,1 ангстрема — наш глаз не воспринимает. Однако это не роковая беда: хитроумным устройством инженеры смогли бы превратить такое невидимое рентгеновское изображение в обыкновенное — видимое. Беда в другом. И тут уж действительно роковая.

Любые электромагнитные лучи — поток не просто волн, а микрокентавров — волн-частиц — фотонов. Каждый фотон — квант электромагнитной энергии. И вы, конечно, еще не забыли, что этот квант, эта порция энергии тем больше, чем выше частота электромагнитных колебаний, или, что то же самое, чем короче длина электромагнитной волны. «Синий фотон» несет с собою (или в себе) больше энергии, чем «красный фотон», а рентгеновский — в тысячи раз больше, чем любой фотон видимого света, потому что тут длина волны излучения в тысячи раз короче (даже в десятки тысяч раз короче для нужных нам лучей: сравните — 0,1 ангстрема и 3–7 тысяч ангстрем). А чем энергичней фотон, тем он массивней. И массу его легко узнать по закону Эйнштейна, так хорошо нам знакомому: Е = М·С2. И вот совсем нетрудно подсчитать, — это простейшая арифметика, — каков же будет по своей массивности фотон того ультракоротковолнового рентгеновского излучения, которое могло бы хоть в принципе осветить электрон внутри атома.

Оказывается, масса такого фотона примерно равна массе электрона!

Теперь пусть начнется долгожданная съемка.

Не ясно ли, что ее придется тотчас прекратить? Ведь на атом хлынет поток таких же массивных волн-частиц, как сам атомный электрон. Вместо того чтобы аккуратно высветить атом, этот поток разгонит электроны, движущиеся вокруг ядра. Он развеет электронное облако — разденет атом. Он превратит его в голое ядро. Но незачем думать о сокрушительном потоке фотонов: в атоме водорода всего один электрон, и достаточно представить себе встречу только одного фотона с этим электроном. То будет встреча равных. И ее исход очевиден. На старом языке бильярдных шариков это будет столкновением двух одинаковых стремительных шаров — удар собьет электрон с его пути и вышвырнет из атомного пространства. Зафиксировав для нас место этого происшествия, фотон вместе с тем испортит весь объект съемки: дальше нечего будет снимать.

Значит, если бы даже существовали в атоме милые нашему воображению точные орбиты, наблюдать их мы все равно не смогли бы. Совершеннейший микроскоп, даже в мысленном идеальном опыте, показал бы нам из всей траектории электрона лишь одну точку. А снять на другой кадр «следующую точку» уже невозможно было бы: электрон в ней, в этой ожидаемой соседней точке, просто отсутствовал бы, и потеряло бы всякий смысл говорить о его «следующем» положении на орбите.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

История / Научная литература / Энциклопедии / Прочая научная литература / Образование и наука