Так работа физиков становится похожей на изыскания археологов: тех, кто возводил пирамиды Египта или циклопические стены Фив, давно уже нет ни в Египте, ни в Фивах, бессмысленна надежда их
Незримые строители тоннелей из тумана творят в камере Вильсона поистине легендарные дела. Кто же они, эти строители?
Одно очевидное умозаключение можно сделать немедленно: это частицы, обладающие электрическим зарядом, ибо нейтральные частицы не умеют ионизировать атомы и молекулы. Кстати, на каждом кадре множество туманных следов, кроме того главного, который оставила гостья, командовавшая самой съемкой на Арагаце, И следы эти разнообразны — есть очень тонкие и потолще, есть прямые и закругленные, есть короткие и длинные… Непрошеные частицы, что так бесцеремонно наследили на сцене, где их вовсе не собирались снимать, могли проникнуть в камеру извне — сверху, снизу, сбоку, а могли зародиться в ней самой. Эта нам сейчас решительно все равно. Зато совсем не все равно, что различия в следах наверняка должны отражать какие-то важные различия в свойствах самих частиц.
Да, но какие различия?
Сначала кажется, что возможности туманной камеры очень скромны: она позволяет узнать, заряжены микрочастицы или нет. Но не забывайте — она делает видимыми их пути. Ради одного этого кембриджскому физику Чарлзу Вильсону стоило отдать годы жизни на изучение туманов, чтобы в конце концов прийти к своему тонкому изобретению Он пришел к нему на редкость вовремя — в 1912 году. Всего годом раньше Эрнест Резерфорд доказал существование атомного ядра, и началось стремительное развитие ядерной физики — А двумя годами раньше австриец Гесс доказал, что на Землю приходит «высотное излучение», и началось столь же бурное развитие физики космических частиц, В эту-то пору исследователи микромира и обрели инструмент, который стал для них тем же, чем был микроскоп для биологов и телескоп для астрономов.
Когда-нибудь человечество поставит памятники выдающимся изобретениям — инструментам, машинам, приборам, конструкциям. Памятник первому спутнику — воплощение этой надежды. То будут монументы в честь коллективного разума. Он достоин бронзы, мрамора и стали! Освоение и совершенствование любого изобретения — дело многих голов и рук. Только «доведенное до ума» последующими, часто неведомыми соавторами первооткрывателя изобретение обнаруживает все заключенные в нем возможности.
Так было и с камерой Вильсона, для которой со временем найдется постамент на площади одного из университетских центров мира.
Тридцать с лишним лет назад молодой и еще неизвестный ученый догадался поместить туманную камеру в Магнитное поле. В ту пору работа с магнитными полями была страстью этого талантливейшего экспериментатора. Однажды он вел опыты с альфа-частицами — ядрами гелия. Они прокладывали в камере отчетливые прекрасные трассы — прямые белые нити тумана. Ученый подумал: магнитное поле должно эти трассы искривить — оно ведь отклоняет заряженные частицы от прямого пути. (Так, в дубенском ускорителе магнитное поле заставляет двигаться по кругу быстролетящие протоны.)
Но чем кривые пути могли быть лучше прямых? Очень просто: искривление туманных следов сулило приобретение новых сведений о частице.
Движущийся заряд противится отклоняющейся силе магнитного поля с тем большим успехом, чем больше масса заряженного тельца и чем выше его скорость. Тяжелую частицу труднее свернуть с ее прямого пути, чем легкую. Быструю — труднее, чем медленную. Это заведомо ясно. У всех ядер гелия одна и та же масса, если пренебречь малыми различиями, зависящими от их не совсем одинаковых скоростей. Значит, при скоростях, далеких от световой, когда такое пренебрежение допустимо, по кривизне туманных шлейфов альфа-частиц можно судить о быстроте их движения: у неторопливых кривизна следа будет сильнее, у более стремительных — слабее.
Ученый получил искривленные следы, и частицы сразу стали рассказывать о себе со сцены туманной камеры гораздо больше, чем прежде. Этим ученым был Петр Леонидович Капица, чье имя ныне так хорошо известно всем.