Рассмотрим принцип воздействия инструмента на алмаз немного подробнее.
В традиционной технологии обработки алмазов в бриллианты одним из определяющих моментов является обеспечение стабильности оборотов вращающегося инструмента. В этом случае линейная скорость каждого зерна абразива в точке касания инструмента с алмазом (V
st) является величиной постоянной (рис. 1.1). На этом рисунке горизонтальная прямая линия – линейная скорость среднестатистического зерна абразива при использовании стандартной технологии (Vst). Волнистая линия – характер изменения скорости аналогичного зерна абразива относительно обрабатываемой поверхности алмаза при применении квантово-волнового метода обработки (V = V2 – V1).В нашем случае обрабатывающий инструмент имеет одну ось вращения (с циклической частотой )
вокруг своего геометрического центра и одновременно совершает независимое эксцентричное перемещение как целое тело вокруг другой, но неподвижной оси ss (с циклической частотой ss). Общий кинематический принцип такого комбинированного двухосевого движения был реализован ранее в работе [9]. Расстояние между подвижной а и неподвижной ss осями вращения (rа) является аппаратурным фактором и выбирается в соответствии с используемым алгоритмом обработки.Важно заметить, что параметр V
(см. рис. 1.1) как приращение линейной скорости движения инструмента относительно обрабатываемой поверхности алмаза есть величина постоянная в любой точке контакта обрабатывающего инструмента с кристаллом и зависит только от rа. Следовательно, и тангенциальное ускорение всех зерен, участвующих в процессе генерации возмущающих волн в обрабатываемом алмазе, будет также инвариантно относительно координат контакта.
Рис. 1.1.
Графическое отображение скоростей движения инструмента как функции времени t
В этом суть одного из многих алгоритмов воздействия. В этих алгоритмах также предусмотрена возможность задаваемых вращательного и возвратно-поступательного перемещений кристалла алмаза относительно инструмента.
Критерий пространственного постоянства V
является определяющим фактором при создании когерентного волнового поля упругих деформаций в объеме алмаза. Когерентность – согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов. Волны называются когерентными, если разность их фаз остается постоянной во времени.Частота вращения инструмента в разработанном оборудовании с ЧПУ может лежать в диапазоне 0:10 000 об./мин., частота ss –
в пределах 0:120 Гц. Конкретные параметры и соотношения частот в случае независимого двухосевого механического движения инструмента определяются поставленной целью и задачей при применении этого нового метода обработки алмаза.Обработка алмазной поверхности проводится усовершенствованным методом [9] в сочетании с принципом волнового возбуждения фононной подсистемы кристалла [10]. Этот принцип был развит и адаптирован непосредственно к процессу механической обработки алмаза. В результате суть способа обработки можно описать следующим образом.
Скорость распространения акустических колебаний в кристалле алмаза составляет ~18 350 м/с (скорость распространения продольной волны) и 12 000 м/с (скорость распространения поперечной волны). Продольные волны (V
p) обусловлены деформациями сжатия-растяжения, поперечные волны (Vs) вызываются деформациями сдвига. Учитывая размеры кристалла и низкий коэффициент затухания акустических волн (волн упругих деформаций) при отражении от внутренних поверхностей алмаза, можно сделать предположение о формировании определенной динамической волновой среды в объеме алмаза при нашем воздействии.Источником гармонических колебаний кристаллической решетки кристалла в этом случае являются зерна абразива обрабатывающего инструмента. С незначительными изменениями, продиктованными условиями нашей волновой теории, мы используем инструмент, аналогичный инструменту, применяемому в алмазообрабатывающей промышленности. В этом случае сам принцип воздействия механической обработки (алмаз по алмазу) сохраняется.
При определенных условиях такого волнового возбуждения системы достигается значительный уровень локальной концентрации волновой энергии [10]. При этом концентрирование энергии происходит, как правило, в отдельных микрообластях кристаллической структуры алмаза (доменах), где реализуется интенсивное взаимодействие волн упругих деформаций.
Критическая ситуация в процессе концентрирования энергии создается, когда частота колебаний атомов в каждом домене достигает значения D
(дебаевская частота колебаний атомов в алмазе, составляющая ~2-1014 с-1) и амплитуда колебаний атомов становится соизмеримой с параметром элементарной ячейки 0 алмаза (0 = 0,357 нм) [2].