Наблюдение за этими изменениями теоретически позволяло косвенно судить о деятельности мозга. В книге «Принципы психологии» (1890) Уильям Джеймс ссылается на работы итальянского физиолога Анджело Моссо[174], зарегистрировавшего пульсации мозга пациентов с дефектами черепной коробки перед операциями на мозге[175]. Моссо заметил, что пульсации в отдельных зонах усиливались во время умственной активности, и предположил — как оказалось, верно, — что изменения в пульсациях связаны с нейронной деятельностью в этих зонах. К сожалению, технологии того времени позволяли вести подобные наблюдения и производить замеры только при вскрытом черепе и физически доступном мозге[176]. Для изучения человеческого мозга метод не слишком жизнеспособный, но именно его использовали ученые в Кембридже в 1899 году — на собаках, кошках и кроликах. Кембриджские исследователи применяли к различным животным электрический ток для стимуляции разных нервных окончаний и замеряли реакцию мозга приборами, напрямую подключенными к живым тканям. Они доказали связь между кровоснабжением мозга и метаболизмом, но метод был и груб, и жесток, и распространения не получил. Изобретение рентгеновского аппарата тоже не помогло: рентгеновские лучи высвечивают только физическую структуру мозга, а не динамические, постоянно меняющиеся электрические и химические процессы. Еще целое столетие непосредственная работа мозга оставалась недосягаемой для исследователей. И вот в конце 1990-х, примерно через сто лет после публикации Фрейдова «Толкования сновидений»[177], внезапно стал доступен метод фМРТ.
Как я уже говорил в прологе к этой книге, фМРТ, функциональная магнитно-резонансная томография, — это такой же МРТ, какой применяют врачи, но затейливее. Ученые XIX века справедливо предполагали, что определить, какая часть мозга подключилась к деятельности в данный момент, можно по активизации нервных клеток, вызывающей усиление кровоснабжения: работающим клеткам нужно больше кислорода. При помощи фМРТ ученые могут отслеживать поглощение кислорода мозгом, не вторгаясь в черепную коробку, а наблюдая квантовые электромагнитные взаимодействия атомов в мозге. Таким способом можно извне наблюдать обычный человеческий мозг в действии, в трехмерной проекции. фМРТ позволяет не только составить карту мозговых структур, но и увидеть, какие из них в данный момент активны и что меняется в активных зонах с течением времени, т. е. теперь ментальные процессы можно увязать с определенными нервными проводящими путями и структурами мозга.
Я не раз уже рассказывал о том, что теперь можно сделать снимок мозга испытуемого и определить, какая часть мозга активна или неактивна при определенных обстоятельствах. Например, я говорил, что у пациента ТН не работала затылочная доля, пояснял, что орбитофронтальная кора отвечает за переживание удовольствия, а также рассказывал, что изучение снимков мозга указывает на существование двух центров физической боли. Это знание стало нам доступно только благодаря фМРТ. За последние годы было разработано еще несколько новых поразительных технологий, но фМРТ изменила сам метод изучения ума, и этот прорыв до сих пор играет ключевую методическую роль.
Окажись мы сейчас перед компьютером с фМРТ-сканами мозга, ученые могли бы разглядеть любой его срез, в любой проекции, практически так же, как если бы вскрыли сам мозг.
На этом снимке, к примеру, демонстрируется срез вдоль центральной плоскости, а испытуемый при этом грезит. Затемненные области в левой и правой части снимка указывают на активность средней префронтальной коры, соответственно.
Ныне ученые подразделяют мозг — грубо — на три области, согласно их функциям, физиологии и эволюционному развитию[178]. При такой категоризации самая примитивная область — «рептильный мозг» (древний мозг), он отвечает за базовые функции выживания: питание, дыхание, пульс и простые версии эмоций вроде страха, агрессии и инстинктов типа «дают — бери, бьют — беги». В мозге всех позвоночных тварей — птиц, пресмыкающихся, земноводных, рыб и млекопитающих — есть рептильные структуры.