Читаем Необычные размышления о… полностью

Тем не менее, нам предстоит понять, каким образом привязаться к такой неподвижной (абсолютной) сетке, чтобы развеять сомнения Галилея, Маха и Эйнштейна в невозможности измерить вектор скорости движущегося объекта, находясь внутри такого объекта. Можно и так сказать, что мы должны привязаться к некоему образу, оставшихся и застывших где-то в пространстве и в прошлом точек испускания фотонов. Чтобы обеспечить такую привязку, мы должны создать новую точку неподвижного (абсолютного) пространства. То есть, мы должны запустить очередной фотон и внимательно проследить за его движением. Точка испускания такого фотона обязательным образом войдет в семью других неподвижных точек испускания (в семейство точек, образующих абсолютную сетку).

Не выпуская из внимания наш, вновь запущенный фотон, мы привязываем движение такого фотона к абсолютной сетке. Если, теперь, движение исследуемого нами объекта привязать к перемещению нашего фотона, то мы вправе сказать, что в этом случае, мы сумели привязать движение исследуемого нами вещественного объекта к абсолютной сетке. А, Мах и Эйнштейн уверяли нас, что абсолютной системы не существует, и привязаться к ней не представляется возможным. Что движение одних вещественных объектов можно рассматривать только на фоне других вещественных объектов, согласно их принципу относительности.

Почему мы, очень подробно и долго а, также, слишком нудно уделяем внимание рассмотрению неподвижной сетки, ее образу в пространстве и ее существованию в прошлом? Потому, что считается, что Мах и Эйнштейн – слишком великие гении. Они сказали, что абсолютной системы отсчета нет и быть не может – как топором отрубили. В непогрешимость высказываний Маха и Эйнштейна верят безоговорочно. Вот, и приходится упражняться, чтобы доказать их неправоту.

Итак, мы с помощью абсолютного посредника – фотона, путем внедрения точки его испускания в абсолютно неподвижную сетку, сумели привязать движение нашего материального объекта к такой абсолютной сетке. Абсолютность скорости фотона (света) обусловлено тем, что скорость его движения абсолютна (неизменна) в любой точке вселенной. Следовательно, время, за которое фотон (свет) пробегает одно и то же расстояние, абсолютно (неизменно) на любом одинаковом пространственном отрезке во вселенной. Справедливо и обратное утверждение: отрезок пространства или расстояние, которое пробегает фотон (свет) за одинаково заданное время, неизменен (абсолютен) в любом месте вселенной и в любое историческое время существования вселенной.

Мах и Эйнштейн были уверены в том, что абсолютного времени не существует. Проигнорировать высказывания Маха и Эйнштейна, вместе с их принципом относительности, мы сможем только тогда, когда в наших измерениях и построении вектора скорости материальных объектов, будем опираться на абсолютную (неподвижную) сетку, на абсолютное время перемещения фотона. Вот, теперь, после столь длительных и нудных рассуждений, мы можем перейти к схеме измерения вектора скорости материального объекта.

На рис. 8.1 такая схема представлена.


Рис. 8.1


где: И – точка испускания фотона;

П – точка приема фотона;

V – скорость перемещения материального объекта, например, галактики;

L – строго фиксированное расстояние между точкой испускания фотона и точкой приема фотона;

Т – время перемещения фотона из точки И в точку П;

m – перемещение материального объекта, например, галактики, в течение времени Т;

Ч1, Ч2 – часы, расположенные, соответственно, в точке И, а также, в точке П.

Верхняя часть схемы на рис. 8.1. отображает начальную фазу измерения – запуск фотона из точки испускания И.

Нижняя часть схемы на рис. 8.1. отображает конечную фазу измерения, когда фотон прилетает в точку приема фотона П. Перемещение фотона из точки И в точку П происходит в вакууме, с тем, чтобы скорость фотона была известной – 299 792 458 метров в секунду. В точках И, П размещены высокоточные атомные (цезиевые) часы Ч1 и Ч2. Расстояние между часами L тщательно измерено и остается неизменным в течение всего процесса измерений. Несколько слов о цезиевых часах.

Принцип действия таких часов основан на измерении излучения, возникающего при переходе электрона между двумя определенными энергетическими уровнями в атоме цезия-133. В течение одной секунды происходит 9 192 631 770 циклов колебаний такого излучения. Цезиевые часы производят подсчет таких колебаний. За одну наносекунду цезиевые часы насчитают приближенно 9,2 циклов колебаний. Если 1 метр разделить на 299 792 458 метров в секунду, то получим 3,335 наносекунд. За такое время фотон (свет) пролетает в вакууме расстояние в один метр. При измерении временного интервала в 3,335 наносекунд, цезиевые часы насчитают 30,68 циклов колебаний излучения. Ясно, что один километр фотон (свет) пролетает за 3335 наносекунд, а цезиевые часы сосчитают 30680 циклов колебаний излучений.

Перейти на страницу:

Похожие книги

Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется
Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется

Если бы можно было рассмотреть окружающий мир при огромном увеличении, то мы бы увидели, что он состоит из множества молекул, которые постоянно чем-то заняты. А еще узнали бы, как действует на наш организм выпитая утром чашечка кофе («привет, кофеин»), более тщательно бы выбирали зубную пасту («так все-таки с фтором или без?») и наконец-то поняли, почему шоколадный фондан получается таким вкусным («так вот в чем секрет!»). Химия присутствует повсюду, она часть повседневной жизни каждого, так почему бы не познакомиться с этой наукой чуточку ближе? Автор книги, по совместительству ученый-химик и автор уникального YouTube-канала The Secret Life of Scientists, предлагает вам взглянуть на обычные и привычные вещи с научной точки зрения и даже попробовать себя в роли экспериментатора!В формате PDF A4 сохранен издательский макет.

Нгуэн-Ким Май Тхи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Физика в быту
Физика в быту

У многих физика ассоциируется с малопонятным школьным предметом, который не имеет отношения к жизни. Но, прочитав эту книгу, вы поймете, как знание физических законов помогает находить ответы на самые разнообразные вопросы, например: что опаснее для здоровья – курение, городские шумы или электромагнитное загрязнение? Почему длительные поездки на самолетах и поездах утомляют? Как связаны музыка и гениальность? Почему работа за компьютером может портить зрение и как этого избежать? Что представляет опасность для космонавтов при межпланетных путешествиях? Как можно увидеть звук? Почему малые дозы радиации полезны, а большие губительны? Как связаны мобильный телефон и плохая память? Почему правильно подобранное освещение – залог хорошей работы и спокойного сна? Когда и почему появились радиоактивные дожди?

Алла Борисовна Казанцева , Вера Александровна Максимова

Научная литература / Детская познавательная и развивающая литература / Научно-популярная литература / Книги Для Детей / Образование и наука
100 великих тайн из жизни растений
100 великих тайн из жизни растений

Ученые считают, что растения наделены чувствами, интеллектом, обладают памятью, чувством времени, могут различать цвета и общаться между собой или предостерегать друг друга. Они умеют распознавать угрозу, дрожат от страха, могут звать на помощь; способны взаимодействовать друг с другом и другими живыми существами на расстоянии; различают настроение и намерения людей; излучение, испускаемое ими, может быть зафиксировано датчиками. Они не могут убежать в случае опасности. Им приходится быть внимательнее и следить за тем, что происходит вокруг них. Растения, как оказывается, реагируют на людей, на шум и другие явления, а вот каким образом — это остается загадкой. Никому еще не удалось приблизиться к ее разгадке.Об этом и многом другом рассказывает очередная книга серии.

Николай Николаевич Непомнящий

Ботаника / Научно-популярная литература / Образование и наука