Внутренняя энергия системы Е – одна из термодинами–ческих функций состояния. Важная особенность функций со–стояния – их независимость от способа достижения данно–го состояния системы.
Изменение внутренней энергии системы E обуслов–лено работой W, которая совершается при взаимодейст–вии системы со средой, и обмен теплотой Q между средой и системой, отношение между этими величинами состав–ляет содержание первого начала термодинамики.
Приращение внутренней энергии системы E в некотором процессе равно теплоте Q, получен–ной системой, плюс работа W, совершенная над системой в этом процессе
:E = Q + W.
В биологических системах теплота обычно отдается системой во внешнюю среду, а работа совершается системой за счет убыли внутренней энергии. Матема–тическую запись первого начала термодинамики удоб–но представить в виде:
-E = –Q – W.
Все величины в приведенных формулах измеряются в джоулях (Дж).
3. Первое начало термодинамики
Первое начало термодинамики относится к числу фун–даментальных законов природы, которые не могут быть выведены из каких-то других законов. Его справедливость доказывают многочисленные эксперименты, в частности неудачные попытки построить вечный двигатель первого рода, т. е. такую машину, которая смогла бы как угодно долго совершать работу без подвода энергии извне.
В зависимости от условий протекания процесса в сис–теме используют различные функции состояния, которые выводят из первого начала термодинамики. При этом вместо сложных биологических систем для получения выводов о превращениях массы и энергии используют упрощенные модели. Давление в системе при этом под–держивается постоянным, оно равно внешнему давле–нию. Такие процессы, протекающие при р = const, назы–ваются изобарными. Работа расширения, совершае-мая при изобарном процессе, как известно, равна:
W = –V,
где V – приращение объема системы, равное раз–ности объемов в состояниях 2 и 1.
Подставляя работу расширения в математическое выражение первого начала и проведя несложные пре–образования, получаем:
Q
где Q – теплота изобарного процесса;
1, 2 – индексы, относящиеся к началу и концу процесса.
Величина (E+ pV) – функция состояния системы, обоз–начаемая через Н и называемая энтальпией:
H = E + V.
Соответственно, выражение можно записать в виде:
Q
Из данного выражения следует, что энтальпия
– функция состояния, приращение которой равно теп–лоте, полученной системой в изобарном процессе.Измерение приращения энтальпии в некотором про–цессе может быть осуществлено при проведении это–го процесса в калориметре при постоянном давлении. Именно так проводили свои эксперименты А. М. Ла–вуазье и П. С. Лаплас, изучая энергетику метаболиз–ма в живом организме.
В тех случаях, когда изменение состояния системы происходит при постоянном объеме, процесс называ–ется изохорным. Изменение объема AV при этом рав–но нулю, и в соответствии с формулой работа расшире–ния W = 0. Тогда из математического выражения первого начала термодинамики следует:
Q
Из вышеуказанного соотношения вытекает термо–динамическое определение: внутренняя энергия
– функция состояния, приращение которой равно теп–лоте QH = E + V.
4. Закон Гесса
Раздел термодинамики, изучающий превращения энер–гии при химических реакциях, называется химической термодинамикой. Уравнение реакции, для которой ука–зываются соответствующие этой реакции изменения внут–ренней энергии E, энтальпии H или какой-либо другой функции состояния, называется термохимическим.
Химические реакции, при протекании которых проис–ходит уменьшение энтальпии системы (H 0) и во внеш–нюю среду выделяется теплота, называются экзотерми–ческими
.Реакции, в результате которых энтальпия возрастает (H 0) и система поглощает теплоту Q
Окисление глюкозы кислородом происходит с выде–лением большого количества теплоты (Qp
= –2800 кДж/ /моль), т. е. этот процесс – экзотермический. Соответ–ствующее термохимическое уравнение запишется в видеС6
Н12 О6 + 602 = 6С02 + 6Н2О, H = –2800 кДж.Реакции, протекающие в растворе, сопровождаются обычно незначительным изменением объема системы, т. е. V 0. В связи с этим во многих случаях при биоло–гических расчетах можно считать, что H = E. Следова–тельно, выделение теплоты в таких системах обусловлено в основном уменьшением внутренней энергии в результа–те протекания реакции, и наоборот.