Этот вопрос был решен в 1985 в очень важной статье, написанной квартетом струнных теоретиков: Филипом Канделасом, Гэри Хоровитцем, Эндрю Строминджером и Эдвардом Виттеном. Им повезло, поскольку два математика, Эугенио Калаби и Шинь-Тунь Яу, уже решили математическую проблему, которая дала ответ. Они открыли и изучили особенно красивую форму шестимерной геометрии, которую мы сейчас называем пространствами Калаби-Яу. Четыре струнных теоретика смогли показать, что необходимые условия для того, чтобы теория струн воспроизвела версию суперсимметричной стандартной модели, такие же, как и условия, которые определяют пространство Калаби-Яу. Затем они предположили, что природа описывается теорией струн, в которой дополнительные шесть измерений выбраны в виде пространства Калаби-Яу. Это урезает возможности и придает теории больше структуры. Например, они явно показали, как вы могли бы заменить константы стандартной модели, такие как те, которые определяют массы различных частиц, на константы, определяющие геометрию пространства Калаби-Яу.
Это был большой прогресс. Но имелась не менее великая проблема. Если бы было только одно пространство Калаби-Яу с фиксированными константами, мы смогли бы получить однозначную единую теорию, к которой мы стремились. К несчастью, оказалось, что имелось много пространств Калаби-Яу. Никто не знал, сколько именно, но сам Яу в разговоре об этом приводил оценку, по меньшей мере, в сотню тысяч. Каждое из этих пространств приводило к различным версиям физики частиц. И каждое пространство появлялось со списком свободных констант, зависящим от его размера и формы. Так что тут не было никакой однозначности, никаких новых предсказаний и ничто не было объяснено.
В дополнение, теории, привлекающие пространства Калаби-Яу, имеют много дополнительных сил. Оказывается, что пока теория струн является суперсимметричной, многие из этих сил будут иметь бесконечный радиус действия. Это было неудачно, поскольку имеются строгие экспериментальные пределы на существование любых сил бесконечного радиуса действия, кроме гравитации и электромагнетизма.
Оставалась и другая проблема. Константы, которые задают геометрию дополнительных измерений, могут изменяться непрерывно. Это могло бы вызвать нестабильности, как и в старых теориях Калуцы-Кляйна. Исключая случай, когда имеется некий мистический механизм, который замораживает геометрию дополнительных измерений, эти нестабильности приводили бы к катастрофе, такой как сингулярности, возникающие из коллапса дополнительных измерений.
И наконец, даже если наш мир описывался бы одной из геометрий Калаби-Яу, не было объяснения тому, как он таким стал. Теория струн появляется и во многих других версиях, кроме пространств Калаби-Яу. Имеются версии теории, в которых число скрученных измерений изменяется по всем значениям от нуля до девяти.
Те геометрии, которые имеют не скрученные измерения, называются плоскими; они определяют миры, которые куда больше, чем нам подсказывает опыт. (В исследовании следствий для физики частиц мы могли бы игнорировать гравитацию и космологию, в этом случае нескрученные измерения имели бы геометрию, описываемую СТО).
Сотня тысяч многообразий Калаби-Яу является только вершиной айсберга. В 1986 Эндрю Строминджер открыл способ конструирования громадного числа дополнительных суперсимметричных теорий струн. Будет полезно сохранить в памяти то, что он написал в заключении к своей статье, описывающей эту конструкцию:
Класс суперсимметричных суперструнных компактификаций чудовищно расширился. ... Не кажется вероятным, что [эти] решения ... можно будет классифицировать в обозримом будущем. Так как ограничения на [эти] решения относительно слабые, кажется вероятным, что число феноменологически приемлемых ... решений может быть найдено. ... Хотя это до некоторой степени утешение, в некотором смысле жизнь была сделана слишком легко. Вся предсказательная сила кажется потерянной.
Все это указывает на огромную необходимость нахождения динамического принципа для определения, [какая теория описывает природу] и оказывается теперь более императивной, чем другие. (Курсив мой.)
Таким образом, принимая стратегию старых высокоразмерных теорий, теория струн переняла также и их проблемы. Имелось очень много решений, и некоторые из них приводили к описанию, которое приблизительно грубо походило на реальный мир, но большинство нет. Имелось много нестабильностей, которые проявлялись в большом количестве дополнительных сил и частиц.