4. Lindley, David. The End of Physics. New York: Basic Books, 1993. В книге подвергаются критическому анализу так называемые «непроверяемые» физические теории, получившие распространение в науке с середины 1980-х годов. Скептицизм автора разделяет и Нобелевский лауреат 1988 года Мэлвин Шварц.
5. Perkowitz, Sidney. Universal Foam: From Cappuchino to the Cosmos. New York: Walker, 2000. Как и в другой своей книге (см. литературу к гл. 15), С. Перковиц удачно иллюстрирует квантовомеханические парадоксы примерами из повседневной жизни и сведениями из других научных дисциплин, что делает текст интересным и ярким.
6. Frayn, Michael. Copenhagen. New York: Anchor, 2000. Пьеса, получившая широкое международное признание, посвящена встрече Нильса Бора с Вернером Гейзенбергом, которая действительно имела место во время Второй мировой войны, когда Гитлер предложил Гейзенбергу создать атомную бомбу. Точное содержание беседы остается неизвестным до сих пор. Фрайну удалось связать проблемы квантовой физики и «принципа неопределенности» со сложными психологическими переживаниями персонажей.
7*. Pensore Roger, et al. The Large, the Small and the Human Mind, Cambridge University Press, 2000. [Имеется перевод: Пенроуз Р. и др. Большее, малое и человеческий разум. — М.: Мир, 2003.]
8*. Пономарев Л. И. Под знаком кванта. — М.: Наука, 1989. Доступно и популярно излагаются парадоксы квантовой механики.
9*. Трейман С. Этот странный квантовый мир. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002. Компактное и достаточно полное популярное изложение квантовой механики, а также основных принципов теории микрочастиц и квантовой теории поля.
Глава 17.
Что же такое черные дыры?
При чтении многих современных монографий по космологии возникает вопрос, не провалился ли Дж. Роберт Оппенгеймер сам в «черную дыру»? Созданные им сложные теории и методы расчетов, связанные с обсуждением черных дыр, практически не упоминаются, а его фамилия отсутствует даже в авторских указателях. Между тем это был выдающийся американский физик, известный в наши дни как руководитель лаборатории в Лос-Аламосе в период создания атомных бомб, сброшенных на Хиросиму и Нагасаки. Он первым понял, что из теории относительности Эйнштейна вытекает возможность существования странных космических объектов. В конце 1938 г. Оппенгеймер и Джордж Волков рассчитали массу и размеры нейтронных звезд. В ходе работы Оппенгеймер понял, что «умирающие» массивные звезды должны претерпевать коллапс (направленный внутрь взрыв), и задумался об их дальнейшей эволюции.
Расчеты приводили к очень сложным математическим уравнениям, для решения которых Оппенгеймер привлек Гартланда Снайдера, блестяще и разносторонне одаренного выпускника Калифорнийского технологического института. Кип Торн, один из крупнейших современных специалистов по теории черных дыр, подробно рассматривает работы Оппенгеймера в своей книге «Черные дыры и деформации времени» (1994) [1]. Несмотря на то что сам Торн был учеником Джона А. Уилера (постоянного соперника и критика Оппенгеймера), он признает, что расчеты, проведенные Снайдером под руководством Оппенгеймера и Ричарда Толмена, являлись исключительно сложными. Некоторые задачи удалось решить лишь в конце 1980-х годов, после появления нового поколения сверхмощных компьютеров. Торн пишет, что «для решения задачи авторам пришлось построить идеализированную модель коллапса звезды и затем рассчитать его следствия. Он называет «научным подвигом» тот факт, что Снайдеру удалось составить требуемые уравнения и найти методы их решения, «позволяющие анализировать различные стороны процесса коллапса и описать его с точки зрения различных наблюдателей, находящихся вне или внутри звезды, а также на ее поверхности».
Многие физики сочли полученные уравнения совершенно необоснованными. Проблема состояла в том, что для наблюдателя, связанного с внешней системой координат, коллапс прекращался или «застывал», в то время как для наблюдателя на поверхности звезды, который постоянно проваливался внутрь, он продолжался бы бесконечно. Вывод о том, что происходящее может выглядеть совершенно по-разному в зависимости от системы наблюдения, объясняется деформацией времени. Такая возможность до этого никем не учитывалась и не обсуждалась. Конечно, физики уже знали и о возможности деформации времени согласно теории относительности Эйнштейна и о том, что результат наблюдений согласно принципу неопределенности Гейзенберга зависит от самого процесса измерения, однако считалось, что все эти эффекты происходят лишь на субатомном уровне, поэтому большинство американских физиков не задумывалось о возможности проявления квантовых эффектов в космических масштабах.