Книга Птолемея – это важнейший научный труд. Строгая, точная, сложная, она представляет астрономию как математическую систему, способную предсказывать кажущиеся беспорядочными движения планет по небу с почти безупречной точностью, ограниченной лишь возможностями человеческого глаза. Эта книга – доказательство того, что догадка Пифагора была верна. Математика позволяет описывать мир и предсказывать его будущее: внешне случайные и беспорядочные движения планет можно точно предсказать, используя формулы Птолемея, в которых объединены столетия труда греческих астрономов, представленные в тщательно систематизированном виде. Даже сегодня, приложив небольшие усилия, можно открыть книгу Птолемея, изучить его выкладки и
После заката античной науки никто во всем Средиземноморье не был способен понять труды Птолемея, как и многие другие важные научные работы, пережившие катастрофу, такие как «Начала» Евклида. В Индии, куда греческое учение попало благодаря активным торговым и культурным связям, эти книги изучались и были поняты.
Из Индии это знание вернулось на Запад благодаря просвещенным персидским и арабским ученым, которые смогли понять и сохранить его. Однако астрономия за тысячу с лишним лет так и не сделала сколько-нибудь существенного шага вперед. Примерно в то же время, когда Поджо Браччолини обнаружил рукопись Лукреция, вольный дух итальянского гуманизма и интерес к античным текстам воодушевили юного поляка, который прибыл на учебу в Италию, сперва в Болонью, затем в Падую.
Он подписывался на латинский манер: Николаус Коперникус. Молодой Коперник изучил «Альмагест» Птолемея и буквально влюбился в него. Он решил посвятить жизнь астрономии, следуя по стопам великого Птолемея.
Пришло время, и более тысячи лет спустя после Птолемея Коперник смог продвинуться на шаг дальше, чем поколения индийских, арабских и персидских астрономов. Он не просто изучал и применял птолемееву систему, внося в нее небольшие поправки, но радикально усовершенствовал ее, смело изменив самые ее основания. Вместо того чтобы описывать, как небесные тела обращаются вокруг Земли, Коперник публикует своего рода пересмотренную и исправленную версию птолемеевского «Альмагеста», согласно которой Солнце находится в центре, а Земля вместе с другими планетами обращается вокруг него.
На этом пути, как надеялся Коперник, вычисления станут работать еще лучше. На деле они не были точнее, чем у Птолемея; в конечном счете, они даже оказались хуже птолемеевских. Но, несмотря на это, идеи Коперника вызвали резонанс: в следующем поколении Иоганн Кеплер показал, что систему Коперника можно заставить работать лучше птолемеевской. Тщательнейшим образом анализируя новые, точные наблюдения, Кеплер показал, что несколько новых математических законов могут описывать движение планет вокруг Солнца с точностью, превосходящий ту, что была достигнута в древности. Итак, только в 1600 году человечество впервые смогло сделать что-то лучше, чем это делалось в Александрии более тысячи лет назад.
Пока на холодном севере[36]
Кеплер рассчитывал движения небесных тел, в Италии Галилео Галилей закладывал основания новой науки. Энергичный итальянец, любящий поспорить, убедительный, высокообразованный, исключительно умный и изобретательный, Галилей получил присланный из Голландии только что изобретенный телескоп и сделал шаг, изменивший человеческую историю. Он направил его в небо.Подобно Рою из «Бегущего по лезвию бритвы», он видит вещи, в которые мы, люди, не можем поверить: кольца вокруг Сатурна, горы на Луне, фазы Венеры, спутники, обращающиеся вокруг Юпитера… Каждое из этих явлений делает идеи Коперника всё более правдоподобными. Научные инструменты начинают открывать близорукому человечеству вид на мир, который намного обширнее и многообразнее того, что люди могли себе вообразить.
Однако величайшая заслуга Галилея состояла в том, что он сделал логический вывод из космической революции, начатой Коперником. Галилей был убежден в том, что Земля – это такая же планета, как и все остальные; исходя из того что движения в небесах следуют точным математическим законам, а Земля – тоже планета и, таким образом, является частью небес, он пришел к выводу, что должны существовать точные математические законы, управляющие движениями предметов