Античный атомизм предвидел и этот аспект современной физики – проявление на глубинном уровне законов вероятности. Демокрит (как и Ньютон) предполагает, что движение атомов строго детерминировано столкновениями. Но его последователь Эпикур исправляет этот детерминизм учителя и вводит в атомизм представление о неопределенности таким же способом, каким Гейзенберг ввел неопределенность в ньютоновский детерминизм. По Эпикуру, атомы могут иногда случайно отклоняться от своего курса. Лукреций поэтично описывает эти отклонения как происходящие «incerto tempore… incertisque loci
» – в неопределенное время, в неопределенном месте[79]. Такая же случайность, такое же проявление вероятности на фундаментальном уровне представляют собой второе ключевое открытие, касающееся свойств нашего мира, которое выражает квантовая механика.Итак, как вычислить вероятность того, что электрон, находившийся в определенной начальной позиции A
, спустя заданное время вновь возникнет в той или иной финальной позиции B?В 1950-х годах Ричард Фейнман, о котором я уже упоминал, нашел весьма интересный метод выполнения таких вычислений: рассмотрим все
возможные траектории от A до B, то есть все мыслимые траектории, которым может следовать электрон, – прямые, искривленные, зигзагообразные… Каждая траектория определяет некоторое число. Вероятность получается путем суммирования всех этих чисел. Подробности вычислений несущественны, зато важен тот факт, что все траектории от A до B дают свой вклад, как будто электрон, чтобы попасть из A в B, проходит по всем возможным путям, или, иными словами, превращается в облако, чтобы затем загадочным образом собраться в точке B, где он вновь с чем-то сталкивается (рис. 4.7).
Рис. 4.7.
При перемещении из точки A в точку B электрон ведет себя так, как будто проходит по всем возможным траекториям
Этот прием вычисления вероятности квантового события называется фейнмановским суммированием по путям[80]
, и мы увидим, что он играет важную роль в квантовой гравитации.Кванты 3: реальность реляционна
Третье открытие, касающееся нашего мира, выражаемое квантовой механикой, – самое глубокое и сложное, и его не предвидели античные атомисты.
Теория не описывает вещи такими, какие они есть
, она описывает, как вещи проявляются и как они взаимодействуют друг с другом. Она описывает не то, где находится частица, но то, как частица проявляет себя по отношению к другим. Мир существующих вещей сокращается до мира возможных взаимодействий. Реальность редуцируется до взаимодействия[81].В некотором смысле это лишь расширение относительности, хотя и весьма радикальное. Аристотель первым отметил, что мы воспринимаем лишь относительную
скорость. На корабле, например, мы говорим о нашей скорости относительно корабля; на суше – относительно Земли. Галилей понял, что этим объясняется, почему мы не чувствуем движения Земли относительно Солнца. Скорость – это не свойство объекта самого по себе, это свойство движения объекта по отношению к другому объекту. Эйнштейн перенес понятие относительности на время: мы можем сказать, что два события одновременны, только относительно определенного состояния движения. Квантовая механика радикальным образом расширяет эту относительность: все переменные аспекты объекта существуют только в отношении к другим объектам. Природа рисует мир только с помощью взаимодействий.В мире, описываемом квантовой механикой, не существует ничего реального, за исключением отношений
между физическими системами. Не объекты входят в отношения, но отношения служат основанием для выделения объектов. Мир квантовой механики – это не мир объектов, это мир событий. Вещи построены из случающихся элементарных событий. В 1950-х годах философ Нельсон Гудман замечательно выразил эту идею словами: «Объект – это монотонный процесс». Камень – это вибрация квантов, сохраняющая во времени свою структуру, точно так же как морская волна сохраняет самотождественность, пока не рассеется в море.Что есть волна, которая движется по воде, не перенося с собой ни единой капли? Волна не объект в том смысле, что она не состоит из материи, которая движется вместе с ней. Атомы нашего тела тоже входят в нас и покидают нас. Мы, как волны и как все объекты, – потоки событий; мы – процессы, монотонные в течение короткого времени…
Квантовая механика описывает не объекты: она описывает процессы, а также события, который служат точками соединения процессов.
Подводя итоги, скажем, что квантовая механика открыла три аспекта нашего мира.
• Зернистость
. Информация, содержащаяся в состоянии системы, конечна и ограничена постоянной Планка.• Неопределенность
. Будущее не предопределено однозначно прошлым. Даже наиболее твердо установленные нами закономерности в основе своей статистические.