По-настоящему удивительно то, что свойства этих рутинно наблюдаемых сегодня странных объектов были
Рис. 10.2.
Поверхность черной дыры, пересекаемая петлями, то есть ребрами спиновой сети, которая описывает состояние гравитационного поля. Каждая петля соответствует кванту площади поверхности черной дыры. © Джон БаезЧерные дыры, которые мы наблюдаем, хорошо описываются теорией Эйнштейна, и для их понимания не требуется квантовая механика. Но есть две загадки черных дыр, для раскрытия которых необходима квантовая механика, и для каждой из них петлевая теория предлагает возможное решение. Одна из них также дает возможность проверки этой теории.
Первое приложение квантовой гравитации к черным дырам связано с забавным фактом, открытым Стивеном Хокингом. В начале 1970-х годов он пришел к теоретическому выводу о том, что черные дыры «горячие». Они ведут себя как нагретые тела – испускают излучение. При этом они теряют энергию, а значит и массу (поскольку энергия и масса – это одно и то же), постепенно становясь все меньше. Они
Предметы бывают горячими, поскольку их микроскопические составляющие движутся. В горячем куске железа, например, атомы железа очень быстро колеблются вокруг своих равновесных положений. Горячий воздух горяч потому, что молекулы в нем движутся быстрее, чем в холодном воздухе.
Что за элементарные «атомы» колеблются в черных дырах, делая их горячими? Хокинг оставил этот вопрос без ответа. Петлевая теория дает возможный ответ. Элементарные атомы, которые вибрируют в черной дыре и тем самым наделяют ее температурой, – это отдельные кванты пространства на ее поверхности.
Таким образом, с помощью петлевой теории удается понять странное тепло черных дыр, предсказанное Хокингом: это тепло – результат микроскопических колебаний отдельных атомов пространства. Они колеблются, поскольку в мире квантовой механики колеблется
Есть и другой способ понимания природы тепла черных дыр. Квантовые флуктуации порождают корреляции между внутренней и внешней областями дыры. (Я подробно остановлюсь на корреляциях и температуре в главе 12.) Квантовая неопределенность на горизонте черной дыры порождает флуктуации геометрии горизонта. Однако флуктуации подразумевают вероятность, а вероятность влечет за собой термодинамику, и, как следствие, температуру. Скрывая от нас часть Вселенной, черная дыра делает свои квантовые флуктуации воспринимаемыми в форме тепла.
Молодой итальянский ученый Евгенио Бианчи, ныне ставший профессором в Соединенных Штатах, выполнил элегантные вычисления, которые демонстрируют, что, отталкиваясь от этих идей и фундаментальных уравнений квантовой теории гравитации, можно вывести формулу для температуры черных дыр, которая впервые была предсказана Хокингом (рис. 10.3).
Второе приложение петлевой квантовой гравитации к физике черных дыр еще более впечатляющее. Сколлапсировавшая звезда исчезает для внешнего наблюдателя: она находится внутри черной дыры. Но что происходит с ней внутри дыры? Что вы увидите, если сами упадете в дыру?
Рис. 10.3.
Стивен Хокинг и Евгенио Бианчи. На доске – ключевые уравнения петлевой теории гравитации, которые описывают черные дырыПоначалу ничего особенного: вы пересечете поверхность черной дыры без серьезного ущерба, а затем вас станет тянуть к центру со все большей скоростью. Что же дальше? Общая теория относительности предсказывает, что в центре всё сжимается в бесконечно малого размера точку с бесконечной плотностью. Но это, опять же, если игнорировать квантовую теорию.